Project description:Uncovering the genetic factors that correlate with a clinical deviation of previously unknown etiology helps to diminish the unknown variation influencing the phenotype. Clinical studies, particularly those that consider the effects of an appliance or treatment regimen on growth, need to be a part of these types of genetic investigations in the future. While the day-to-day utilization of "testing" for genetic factors is not ready for practice yet, genetic testing for monogenic traits such as Primary Failure of Eruption (PFE) and Class III malocclusion is showing more promise as knowledge and technology advances. Although the heterogeneous complexity of such things as facial and dental development, the physiology of tooth movement, and the occurrence of External Apical Root Resorption (EARR) make their precise prediction untenable, investigations into the genetic factors that influence different phenotypes, and how these factors may relate to or impact environmental factors (including orthodontic treatment) are becoming better understood. The most important "genetic test" the practitioner can do today is to gather the patient's individual and family history. This would greatly benefit the patient, and augment the usefulness of these families in future clinical research in which clinical findings, environmental, and genetic factors can be studied.
Project description:Non-epithelial ovarian cancers (NEOC) are a group of uncommon malignancies that mainly includes germ cell tumours (GCT), sex cord-stromal tumours (SCST), and some extremely rare tumours, such as small cell carcinomas and sarcomas. Each of these classifications encompasses multiple histologic subtypes. The aetiology and molecular origins of each sub-group of NEOC require further investigation, and our understanding on the genetic changes should be optimised. In this article, we provide an update on the clinical presentation, pathology, genetics, treatment and survival of the main histological subtypes of the GCT and the SCST, as well as of ovarian small cell carcinomas. We also discuss miRNA expression profiles of NEOC and report the currently active clinical trials that include NEOC.
Project description:Group A Streptococcus (Strep A) leads to 600,000 deaths and 600 million cases of pharyngitis annually. Although long a promising target for vaccine development, how much funding should be allocated to develop a Strep A vaccine is unclear. We aim to calculate the optimal amount of global spending for Strep A vaccine development, the resulting benefits, and the social rate of return on this spending. We develop a model of optimal spending, from a global societal perspective, on research and development (R&D) for vaccines and treatments. The model takes as inputs total harm from the disease, the probability an R&D project succeeds, the cost of a project, and the fraction of total harm a success alleviates. Based on these inputs the model outputs an optimal amount of spending and a rate of return. We calibrate the model for Strep A. Optimal spending is estimated to be 2020 USD33 billion. This spending leads to 2020 USD1.63 trillion in benefits and a real return of 22.3% per year for thirty years. Sensitivity shows an optimal spending range of 15.9 billion to 58.5 billion, a benefits range of 1.6 trillion to 37.9 trillion, and a return range of 18.0–48.2%. Investment in a Strep A vaccine could create enormous benefits for comparatively little cost. It represents one of the highest return uses of public spending. Policy can promote Strep A vaccine development through direct funding of projects and by promoting financial mechanisms that allow the private sector to diversify its R&D investment.
Project description:The climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.
Project description:BackgroundTropical infectious diseases are called neglected, because they are, inter alia, characterized by an R&D deficit. A similar deficit exists for rare (orphan) diseases which neither promise a sufficient return on R&D investment. To encourage the development of treatments for rare diseases, orphan drug acts were created which contain financial and non-financial incentives for the pharmaceutical industry. Similar instruments aimed exclusively at neglected diseases do not yet exist. Proposals for a regulatory approach to promote R&D for neglected diseases include the application of selected orphan drug incentives, or the implementation of a Medical Research and Development Treaty (MRDT) with national funding obligations for medical R&D. We compiled and analyzed experts' opinions on causes for the treatment deficit for neglected diseases and on desirable and feasible measures to promote neglected disease R&D. Hereby, the focus was on mechanisms contained in orphan drug regulations and in the Medical Research and Development Treaty draft (Discussion draft 4, 2005). Lastly, we solicited experts' opinions on the desirability and feasibility of a regulatory instrument to foster R&D for neglected diseases.MethodsAn international online-Delphi survey was conducted with 117 (first round) and 56 (second round) experts of different professional backgrounds and professional affiliations who formulated and ranked causes and solutions related to the treatment deficit for neglected diseases.ResultsIn both rounds of survey, the majority of the participating experts (88.4% first round, 86.8% second round) advocated the development of a regulatory instrument to promote R&D for neglected diseases. Most experts (77.9% first round, 79.3% second round) also considered this to be a feasible option. With the exception of market exclusivity, which was viewed critically, key provisions contained in orphan drug regulations were judged favorably also for neglected diseases. A majority (87.1% first round, 77.2% second round) supported national funding obligations for neglected diseases which are proposed by the Medical Research and Development Treaty draft.ConclusionsWhile not all features of orphan drug regulations and of the MRDT draft received equal support, the view was expressed that a regulatory instrument would be a desirable and feasible measure to promote R&D for neglected diseases.
Project description:Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Project description:We examine effects of government spending on postdoctoral researchers' (postdocs) productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government's 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers' productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders) produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.
Project description:BackgroundNeglected tropical diseases (NTDs) are closely related to poverty and affect over a billion people in developing countries. The unmet treatment needs cause high mortality and disability thereby imposing a huge burden with severe social and economic consequences. Although coordinated by the World Health Organization, various philanthropic organizations, national governments and the pharmaceutical industry have been making efforts in improving the situation, the control of NTDs is still inadequate and extremely difficult today. The lack of safe, effective and affordable medicines is a key contributing factor. This paper reviews the recent advances and some of the challenges that we are facing in the fight against NTDs.Main bodyIn recent years, a number of innovations have demonstrated propensity to promote drug discovery and development for NTDs. Implementation of multilateral collaborations leads to continued efforts and plays a crucial role in drug discovery. Proactive approaches and advanced technologies are urgently needed in drug innovation for NTDs. However, the control and elimination of NTDs remain a formidable task as it requires persistent international cooperation to make sustainable progresses for a long period of time. Some currently employed strategies were proposed and verified to be successful, which involve both mechanisms of 'Push' which aims at cutting the cost of research and development for industry and 'Pull' which aims at increasing market attractiveness. Coupled to this effort should be the exercise of shared responsibility globally to reduce risks, overcome obstacles and maximize benefits. Since NTDs are closely associated with poverty, it is absolutely essential that the stakeholders take concerted and long-term measures to meet multifaceted challenges by alleviating extreme poverty, strengthening social intervention, adapting climate changes, providing effective monitoring and ensuring timely delivery.ConclusionsThe ongoing endeavor at the global scale will ultimately benefit the patients, the countries they are living and, hopefully, the manufacturers who provide new preventive, diagnostic and therapeutic products.