Unknown

Dataset Information

0

Characterization of 5' untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences.


ABSTRACT: The human voltage-gated sodium channel gene cluster on chromosome 2q24 contains three paralogs, SCN1A, SCN2A, and SCN3A, which are expressed in the central nervous system. Mutations in SCN1A and SCN2A cause several subtypes of idiopathic epilepsy. Furthermore, many SCN1A mutations are predicted to reduce protein levels, emphasizing the importance of precise sodium channel gene regulation. To investigate the genetic factors that regulate the expression of SCN1A, SCN2A, and SCN3A, we characterized the 5' untranslated region of each gene. We identified multiple noncoding exons and observed brain region differences in the expression levels of noncoding exons. Comparative sequence analysis revealed 33 conserved noncoding sequences (CNSs) between the orthologous mammalian genes and 6 CNSs between the three human paralogs. Seven CNSs corresponded to noncoding exons. Twelve CNSs were evaluated for their ability to alter the transcription of a luciferase reporter gene, and 3 resulted in a modest, but statistically significant change.

SUBMITTER: Martin MS 

PROVIDER: S-EPMC2637551 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of 5' untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences.

Martin Melinda S MS   Tang Bin B   Ta Nga N   Escayg Andrew A  

Genomics 20070604 2


The human voltage-gated sodium channel gene cluster on chromosome 2q24 contains three paralogs, SCN1A, SCN2A, and SCN3A, which are expressed in the central nervous system. Mutations in SCN1A and SCN2A cause several subtypes of idiopathic epilepsy. Furthermore, many SCN1A mutations are predicted to reduce protein levels, emphasizing the importance of precise sodium channel gene regulation. To investigate the genetic factors that regulate the expression of SCN1A, SCN2A, and SCN3A, we characterized  ...[more]

Similar Datasets

| S-EPMC6740520 | biostudies-literature
| S-EPMC3437034 | biostudies-literature
| S-EPMC6005695 | biostudies-literature
| S-EPMC1988852 | biostudies-literature
| S-EPMC8472079 | biostudies-literature
| S-EPMC9204039 | biostudies-literature
| S-EPMC7641581 | biostudies-literature
| S-EPMC3663416 | biostudies-literature
| S-EPMC2660338 | biostudies-literature
| S-EPMC6487023 | biostudies-literature