ABSTRACT: When the fungus Stachybotrys chartarum is inhaled, its mycotoxins may cause lung injury and inflammation. The severity of human responses to S. chartarum in both occupational and home settings varies widely. To explore these differences, we intratracheally instilled C3H/HeJ, BALB/c, and C57BL/6J mice with S. chartarum spores suspended in saline. One day later, the mice were humanely killed, bronchoalveolar lavage (BAL) was performed, and biochemical and cellular indicators of lung injury and inflammation were measured. BALB/c mice showed the highest myeloperoxidase activity, albumin and hemoglobin levels, and neutrophil numbers in their BAL among the three strains. BALB/c was the only strain to show significant increases in keratinocyte-derived cytokine (KC), monocyte chemotactic protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-1gamma, MIP-2, RANTES, IL-1alpha, IL-1beta, IL-3, IL-6, IL-18, leukemia inhibitory factor, macrophage colony-stimulating factor, and TNF-alpha. A model of allergen-induced airway inflammation was examined to assess whether underlying allergic inflammation might contribute to increased susceptibility to S. chartarum-induced pulmonary inflammation and injury. Surprisingly, in BALB/c mice, ovalbumin-induced airway inflammation produced a protective effect against some S. chartarum-induced pulmonary responses. This is the first report of mammalian strain differences affecting responses to S. chartarum. These responses differ from those reported for LPS and other fungi. Analogous underlying genetic differences may contribute to the wide range of sensitivity to Stachybotrys among humans.