Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation.
Ontology highlight
ABSTRACT: GATA transcription factors are important regulators of tissue-specific gene expression during development. GATA2 and GATA3 have been implicated in the regulation of trophoblast-specific genes. However, the regulatory mechanisms of GATA2 expression in trophoblast cells are poorly understood. In this study, we demonstrate that Gata2 is transcriptionally induced during trophoblast giant cell-specific differentiation. Transcriptional induction is associated with displacement of GATA3-dependent nucleoprotein complexes by GATA2-dependent nucleoprotein complexes at two regulatory regions, the -3.9- and +9.5-kb regions, of the mouse Gata2 locus. Analyses with reporter genes showed that, in trophoblast cells, -3.9- and +9.5-kb regions function as transcriptional enhancers in GATA motif independent and dependent fashions, respectively. We also found that knockdown of GATA3 by RNA interference induces GATA2 in undifferentiated trophoblast cells. Interestingly, three other known GATA motif-dependent Gata2 regulatory elements, the -1.8-, -2.8-, and -77-kb regions, which are important to regulate Gata2 in hematopoietic cells are not occupied by GATA factors in trophoblast cells. These elements do not show any enhancer activity and also possess inaccessible chromatin structure in trophoblast cells indicating a context-dependent function. Our results indicate that GATA3 directly represses Gata2 in undifferentiated trophoblast cells, and a switch in chromatin occupancy between GATA3 and GATA2 (GATA3/GATA2 switch) induces transcription during trophoblast differentiation. We predict that this GATA3/GATA2 switch is an important mechanism for the transcriptional regulation of other trophoblast-specific genes.
SUBMITTER: Ray S
PROVIDER: S-EPMC2643515 | biostudies-literature | 2009 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA