Biochemical, molecular, and functional characterization of PISCF-allatostatin, a regulator of juvenile hormone biosynthesis in the mosquito Aedes aegypti.
Ontology highlight
ABSTRACT: Aedes aegypti PISCF-allatostatin or allatostatin-C (Ae-AS-C) was isolated using a combination of high performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA). The matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrum of positive ELISA fractions revealed a molecular mass of 1919.0 Da, in agreement with the sequence qIRYRQCYFNPISCF, with bridged cysteines. This sequence was confirmed by matrix-assisted laser desorption/ionization tandem TOF/TOF mass spectrometry analysis. The corresponding Ae-AS-C cDNA was amplified by PCR, and the sequence of the peptide was confirmed. An in vitro radiochemical assay was used to study the inhibitory effect of synthetic Ae-AS-C on juvenile hormone biosynthesis by the isolated corpora allata (CA) of adult female A. aegypti. The inhibitory action of synthetic Ae-AS-C was dose-dependent; with a maximum at 10(-9) m. Ae-AS-C showed no inhibitory activity in the presence of farnesoic acid, an immediate precursor of juvenile hormone, indicating that the Ae-AS-C target is located before the formation of farnesoic acid in the pathway. The sensitivity of the CA to inhibition by Ae-AS-C in the in vitro assay varied during the adult life; the CA was most sensitive during periods of low synthetic activity. In addition, the levels of Ae-AS-C in the brain were studied using ELISA and reached a maximum at 3 days after eclosion. These studies suggest that Ae-AS-C is an important regulator of CA activity in A. aegypti.
SUBMITTER: Li Y
PROVIDER: S-EPMC2647716 | biostudies-literature | 2006 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA