Ontology highlight
ABSTRACT: Background
TAM receptors (Tyro3, Axl and Mer) are expressed in hematopoietic tissues. The roles of the three receptors in hematopoiesis are, however, largely unknown. We investigated the role of TAM receptors in regulating erythropoiesis.Design and methods
Single and double mutant mice for Axl and Mer were used in the study. Cellularity of bone marrow and spleen, hematologic parameters, flow cytometry analysis of erythroid cell maturation, erythropoietic response to acute hemolytic anemia, bone marrow transplantation and the expression of erythropoisis were analyzed to evaluate the function of Axl and Mer in erythropoiesis.Results
Axl and Mer, but not Tyro3, were constitutively expressed in developing erythroid cells. Mice lacking Axl and Mer (Axl(-/-)Me(-/-)) had impaired erythropoiesis in bone marrow and expanded splenic erythropoiesis. We found an inhibition of differentiation at the transition from erythroid progenitors to proerythroblasts in Axl(-/-)Mer(-/-) mice. These mice exhibited a low rate of erythropoietic response to acute anemia induced by phenylhydrazine. Bone marrow transplantation studies showed that the impaired erythropoiesis in Axl(-/-)Mer(-/-) mice is erythroid cell-autonomous. TAM receptors may influence erythropoiesis through the regulation of GATA-1 erythropoietin receptor and EpoR expression in erythroid progenitors. Notably, mice lacking single Axl or Mer exhibited normal erythropoiesis in steady-state conditions.Conclusions
Axl and Mer play an important role in regulating erythropoiesis. This finding provides a novel insight into the mechanism of erythropoiesis.
SUBMITTER: Tang H
PROVIDER: S-EPMC2649353 | biostudies-literature | 2009 Mar
REPOSITORIES: biostudies-literature
Haematologica 20090211 3
<h4>Background</h4>TAM receptors (Tyro3, Axl and Mer) are expressed in hematopoietic tissues. The roles of the three receptors in hematopoiesis are, however, largely unknown. We investigated the role of TAM receptors in regulating erythropoiesis.<h4>Design and methods</h4>Single and double mutant mice for Axl and Mer were used in the study. Cellularity of bone marrow and spleen, hematologic parameters, flow cytometry analysis of erythroid cell maturation, erythropoietic response to acute hemolyt ...[more]