Ontology highlight
ABSTRACT: Background
Cre/loxP-mediated genetic modification is the most widely used conditional genetic approach used in the mouse. Engineered Cre and the mutated ligand-binding domain of estrogen receptor fusion recombinase (CreERT) allow temporal control of Cre activity.Results
In this study, we have generated two distinct transgenic mouse lines expressing CreERT, which show 4-hydroxytamoxifen (4-OHT)-inducible and spontaneous (4-OHT-independent) Cre activities, referred to Tg(BK5-CreERT)I and Tg(BK5-CreERT)S, respectively. The transgenic construct is driven by the bovine Keratin 5 promoter, which is active in the basal epithelial lineage of stratified and pseudo-stratified epithelium across multiple organs. Despite the difference in 4-OHT dependency, the Tg(BK5-CreERT)I and Tg(BK5-CreERT)S mouse lines shared similar Cre-mediated recombination among various organs, except for unique mammary epithelial Cre activity in Tg(BK5-CreERT)S females.Conclusion
These two new transgenic mouse lines for the analysis of basal epithelial function and for the genetic modification have been created allowing the identification of these cell lineages and analysis of their differentiation during embryogenesis, during perinatal development and in adult mice.
SUBMITTER: Liang CC
PROVIDER: S-EPMC2653515 | biostudies-literature | 2009 Jan
REPOSITORIES: biostudies-literature
Liang Chih-Chia CC You Li-Ru LR Chang Junn-Liang JL Tsai Ting-Fen TF Chen Chun-Ming CM
Journal of biomedical science 20090108
<h4>Background</h4>Cre/loxP-mediated genetic modification is the most widely used conditional genetic approach used in the mouse. Engineered Cre and the mutated ligand-binding domain of estrogen receptor fusion recombinase (CreERT) allow temporal control of Cre activity.<h4>Results</h4>In this study, we have generated two distinct transgenic mouse lines expressing CreERT, which show 4-hydroxytamoxifen (4-OHT)-inducible and spontaneous (4-OHT-independent) Cre activities, referred to Tg(BK5-CreERT ...[more]