Unknown

Dataset Information

0

The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency.


ABSTRACT: In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this "cryptic" transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution. We find that suppression of cryptic transcription occurs independent of gene length or transcriptional frequency. Our conclusions differ with those reported previously because we obtained a higher-resolution dataset, we accounted for the fact that gene length and transcriptional frequency are not independent variables, and we accounted for several ascertainment biases that make cryptic transcription easier to detect in long, infrequently transcribed genes. These new results and conclusions have implications for many commonly used genomic analysis approaches, and for the evolution of high-fidelity RNA polymerase II transcriptional initiation in eukaryotes.

SUBMITTER: Lickwar CR 

PROVIDER: S-EPMC2654109 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency.

Lickwar Colin R CR   Rao Bhargavi B   Shabalin Andrey A AA   Nobel Andrew B AB   Strahl Brian D BD   Lieb Jason D JD  

PloS one 20090319 3


In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this "cryptic" transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identif  ...[more]

Similar Datasets

| S-EPMC1877753 | biostudies-literature
| S-EPMC5133700 | biostudies-literature
| S-EPMC5717045 | biostudies-literature
2008-10-31 | GSE13310 | GEO
| S-EPMC5133703 | biostudies-literature
| S-EPMC8936446 | biostudies-literature
| S-EPMC7367204 | biostudies-literature
| S-EPMC5854953 | biostudies-literature
| S-EPMC5608972 | biostudies-literature
| S-EPMC3133350 | biostudies-literature