Unknown

Dataset Information

0

Biogenesis of iron-sulfur clusters in photosystem I: holo-NfuA from the cyanobacterium Synechococcus sp. PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro.


ABSTRACT: The NfuA protein has been postulated to act as a scaffolding protein in the biogenesis of photosystem (PS) I and other iron-sulfur (Fe/S) proteins in cyanobacteria and chloroplasts. To determine the properties of NfuA, recombinant NfuA from Synechococcus sp. PCC 7002 was overproduced and purified. In vitro reconstituted NfuA contained oxygen- and EDTA-labile Fe/S cluster(s), which had EPR properties consistent with [4Fe-4S] clusters. After reconstitution with 57Fe2+, Mössbauer studies of NfuA showed a broad quadrupole doublet that confirmed the presence of [4Fe-4S]2+ clusters. Native gel electrophoresis under anoxic conditions and chemical cross-linking showed that holo-NfuA forms dimers and tetramers harboring Fe/S cluster(s). Combined with iron and sulfide analyses, the results indicated that one [4Fe-4S] cluster was bound per NfuA dimer. Fe/S cluster transfer from holo-NfuA to apo-PsaC of PS I was studied by reconstitution of PS I complexes using P700-F(X) core complexes, PsaD, apo-PsaC, and holo-NfuA. Electron transfer measurements by time-resolved optical spectroscopy showed that holo-NfuA rapidly and efficiently transferred [4Fe-4S] clusters to PsaC in a reaction that required contact between the two proteins. The NfuA-reconstituted PS I complexes had typical charge recombination kinetics from [F(A)/F(B)](-) to P700+ and light-induced low-temperature EPR spectra. These results establish that cyanobacterial NfuA can act as a scaffolding protein for the insertion of [4Fe-4S] clusters into PsaC of PS I in vitro.

SUBMITTER: Jin Z 

PROVIDER: S-EPMC2661401 | biostudies-literature | 2008 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biogenesis of iron-sulfur clusters in photosystem I: holo-NfuA from the cyanobacterium Synechococcus sp. PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro.

Jin Zhao Z   Heinnickel Mark M   Krebs Carsten C   Shen Gaozhong G   Golbeck John H JH   Bryant Donald A DA  

The Journal of biological chemistry 20080811 42


The NfuA protein has been postulated to act as a scaffolding protein in the biogenesis of photosystem (PS) I and other iron-sulfur (Fe/S) proteins in cyanobacteria and chloroplasts. To determine the properties of NfuA, recombinant NfuA from Synechococcus sp. PCC 7002 was overproduced and purified. In vitro reconstituted NfuA contained oxygen- and EDTA-labile Fe/S cluster(s), which had EPR properties consistent with [4Fe-4S] clusters. After reconstitution with 57Fe2+, Mössbauer studies of NfuA sh  ...[more]

Similar Datasets

| S-EPMC4059106 | biostudies-literature
| S-EPMC4047364 | biostudies-literature
| S-EPMC7261492 | biostudies-literature
| S-EPMC7046716 | biostudies-literature
| S-EPMC3067432 | biostudies-literature
| S-EPMC2754062 | biostudies-literature
| S-EPMC5062996 | biostudies-literature
| S-EPMC5105302 | biostudies-literature
| S-EPMC4408914 | biostudies-literature
| S-EPMC5819187 | biostudies-literature