Project description:Autophagy is a catabolic mechanism that selectively eliminates long-lived proteins, aggregates and damaged organelles and is thereby fundamental in maintaining cellular homeostasis. As a prosurvival mechanism, autophagy is carefully regulated and its dysfunction is associated with cancer development. Work of Huang et al (2013) in this issue of The EMBO Journal identifies the apoptosis inhibitor XIAP as a novel repressor of autophagy--a function that significantly contributes to its tumorigenecity.
Project description:The insertion and deletion of U residues at specific sites in mRNAs in trypanosome mitochondria is thought to involve 3' terminal uridylyl transferase (TUTase) activity. TUTase activity is also required to create the nonencoded 3' oligo[U] tails of the transacting guide RNAs (gRNAs). We have described two TUTases, RET1 (RNA editing TUTase 1) and RET2 (RNA editing TUTase 2) as components of different editing complexes. Tandem affinity purification-tagged Trypanosoma brucei RET2 (TbRET2) was expressed and localized to the cytosol in Leishmania tarentolae cells by removing the mitochondrial signal sequence. Double-affinity isolation yielded tagged TbRET2, together with a few additional proteins. This material exhibits a U-specific transferase activity in which a single U is added to the 3' end of a single-stranded RNA, thereby confirming that RET2 is a 3' TUTase. We also found that RNA interference of RET2 expression in T. brucei inhibits in vitro U-insertion editing and has no effect on the length of the 3' oligo[U] tails of the gRNAs, whereas down-regulation of RET1 has a minor effect on in vitro U-insertion editing, but produces a decrease in the average length of the oligo[U] tails. This finding suggests that RET2 is responsible for U-insertions at editing sites and RET1 is involved in gRNA 3' end maturation, which is essential for creating functional gRNAs. From these results we have functionally relabeled the previously described TUT-II complex containing RET1 as the guide RNA processing complex.
Project description:MicroRNAs (miRs) are short non-coding transcripts involved in a wide variety of cellular processes. Several recent studies have established a link between hypoxia, a well-documented component of the tumour microenvironment, and specific miRs. One member of this class, miR-210, was identified as hypoxia inducible in all the cell types tested, and is overexpressed in most cancer types. Its hypoxic induction is dependent on a functional hypoxia-inducible factor (HIF), thus extending the transcriptional repertoire of the latter beyond 'classic' genes. From a clinical standpoint, miR-210 overexpression has been associated with adverse prognosis in breast tumours and been detected in serum of lymphoma patients and could serve as a tool to define hypoxic malignancies. We discuss the role of miR-210 and its emerging targets, as well as possible future directions for clinical applications in oncology and ischaemic disorders.
Project description:We introduce a new variant of the complete active space second-order perturbation theory (CASPT2) method that performs similarly to multistate CASPT2 (MS-CASPT2) in regions of the potential energy surface where the electronic states are energetically well separated and is akin to extended MS-CASPT2 (XMS-CASPT2) in case the underlying zeroth-order references are near-degenerate. Our approach follows a recipe analogous to that of XMS-CASPT2 to ensure approximate invariance under unitary transformations of the model states and a dynamic weighting scheme to smoothly interpolate the Fock operator between state-specific and state-average regimes. The resulting extended dynamically weighted CASPT2 (XDW-CASPT2) methodology possesses the most desirable features of both MS-CASPT2 and XMS-CASPT2, that is, the ability to provide accurate transition energies and correctly describe avoided crossings and conical intersections. The reliability of XDW-CASPT2 is assessed on a number of molecular systems. First, we consider the dissociation of lithium fluoride, highlighting the distinctive characteristics of the new approach. Second, the invariance of the theory is investigated by studying the conical intersection of the distorted allene molecule. Finally, the relative accuracy in the calculation of vertical excitation energies is benchmarked on a set of 26 organic compounds. We found that XDW-CASPT2, albeit being only approximately invariant, produces smooth potential energy surfaces around conical intersections and avoided crossings, performing equally well to the strictly invariant XMS-CASPT2 method. The accuracy of vertical transition energies is almost identical to MS-CASPT2, with a mean absolute deviation of 0.01-0.02 eV, in contrast to 0.12 eV for XMS-CASPT2.
Project description:Coronavirus 2019 disease (COVID-19) continues to challenge healthcare systems globally as many countries are currently experiencing an increase in the morbidity and mortality. Compare baseline characteristics, clinical presentation, treatments, and clinical outcomes of patients admitted during the second peak to those admitted during the first peak. Retrospective analysis of 258 COVID-19 patients consecutively admitted to the Tel Aviv Medical Center, of which, 131 during the first peak (March 21-May 30, 2020) and 127 during the second peak (May 31-July 16, 2020). First and second peak patients did not differ in baseline characteristics and clinical presentation at admission. Treatment with dexamethasone, full-dose anticoagulation, tocilizumab, remdesivir, and convalescent plasma transfusion were significantly more frequent during the second peak, as well as regimens combining 3-4 COVID-19-directed drugs. Compared to the first peak, 30-day mortality and invasive mechanical ventilation rates as well as adjusted risk were significantly lower during the second peak (10.2%, vs 19.8% vs p = 0.028, adjusted HR 0.39, 95% CI 0.19-0.79, p = 0.009 and 8.8% vs 19.3%, p = 0.002, adjusted HR 0.29, 95% CI 0.13-0.64, p = 0.002; respectively). Rates of 30-day mortality and invasive mechanical ventilation, as well as adjusted risks, were lower in the second peak of the COVID-19 pandemic among hospitalized patients. The change in treatment strategy and the experienced gained during the first peak may have contributed to the improved outcomes.
Project description:Traditional denaturants such as urea and guanidinium ion unfold proteins in a cooperative "all-or-none" fashion. However, their high working concentration in combination with their strong absorption in the far ultraviolet region make it impossible to measure high quality circular dichroism or infrared spectra, which are commonly used to detect changes in protein secondary structure. On the other hand, detergents such as dodecyl sulfate destabilize native protein conformation at low millimolar concentrations and are UV transparent, but they denature proteins more gradually than guanidinium or urea. In this work, we studied the denaturation properties of the fungicide dodecylguanidinium acetate (dodine), which combines both denaturants into one. We show that dodine unfolds some small proteins at millimolar concentrations, facilitates temperature denaturation, and is transparent enough at its working concentration, unlike guanidinium, to measure full range circular dichroism spectra. Our results also suggest that dodine allows fine-tuning of the protein's unfolded state, unlike traditional "all-or-none" denaturants.
Project description:MicroRNAs (miRNAs) are critical mediators of posttranscriptional regulation via their targeting of the imperfect antisense complementary regions of coding and non-coding transcripts. Recently, researchers have shown that miRNAs play roles in many aspects of regulation of immune cell function by targeting of inflammation-associated genes, including Toll-like receptors (TLRs). Besides this indirect regulatory role of miRNAs, they can also act as physiological ligands of specific TLRs and initiate the signaling cascade of immune response. In this review, we summarize the potential roles of miRNAs in regulation of TLR gene expression and TLR signaling, with a focus on the ability of miRNAs bind to TLRs.
Project description:Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Project description:Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability.