Project description:The ecological correlates of fitness costs of genetic similarity in free-living, large populations of organisms are poorly understood. Using a dataset of genetic similarity as reflected by band-sharing coefficients of minisatellites, we show that bird species with higher genetic similarity experience elevated hatching failure of eggs, increasing by a factor of six across 99 species. Island distributions and cooperative breeding systems in particular were associated with elevated genetic similarity. These findings provide comparative evidence of detrimental fitness consequences of high genetic similarity across a wide range of species, and help to identify ecological factors potentially associated with increased risk of extinction.
Project description:Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios.
Project description:Flat hydrodynamic shells likely represent an evolutionary trade-off between adaptation to an aquatic lifestyle and the instability of more rounded shells, thought beneficial for self-righting. Trade-offs often result in compromises, this is particularly true when freshwater turtles, with flatter shells, must self-right to avoid the negative effects of inverting. These turtles, theoretically, invest more biomechanical effort to achieve successful and timely self-righting when compared to turtles with rounded carapaces. This increase in effort places these hatchlings in a precarious position; prone to inversion and predation and with shells seemingly maladapted to the act of self-righting. Here, we examine hatchling self-righting performance in three morphologically distinct freshwater turtle species (Apalone spinifera, Chelydra serpentina and Trachemys scripta scripta) that inhabit similar environmental niches. We demonstrate that these hatchlings were capable of rapid self-righting and used considerably less biomechanical effort relative to adult turtles. Despite differences in shell morphology the energetic efficiency of self-righting remained remarkably low and uniform between the three species. Our results confound theoretical predictions of self-righting ability based on shell shape metrics and indicate that other morphological characteristics like neck or tail morphology and shell material properties must be considered to better understand the biomechanical nuances of Testudine self-righting.
Project description:Species in the Fusarium solani species complex are fast growing, environmental saprophytic fungi. Members of this genus are filamentous fungi with a wide geographical distribution. Fusarium keratoplasticum and F. falciforme have previously been isolated from sea turtle nests and have been associated with high egg mortality rates. Skin lesions were observed in a number of stranded, post-hatchling loggerhead sea turtles (Caretta caretta) in a rehabilitation facility in South Africa. Fungal hyphae were observed in epidermal scrapes of affected turtles and were isolated. The aim of this study was to characterise the Fusarium species that were isolated from these post-hatchling loggerhead sea turtles (Caretta caretta) that washed up on beaches along the South African coastline. Three gene regions were amplified and sequenced, namely the internal transcribed spacer region (ITS), a part of the nuclear large subunit (LSU), and part of the translation elongation factor 1 α (tef1) gene region. Molecular characteristics of strains isolated during this study showed high similarity with Fusarium isolates, which have previously been associated with high egg mortality rates in loggerhead sea turtles. This is the first record of F. keratoplasticum, F. falciforme and F. crassum isolated from stranded post-hatchling loggerhead sea turtles in South Africa.
Project description:The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.
Project description:Reptile embryos can move inside eggs to seek optimal thermal conditions, falsifying the traditional assumption that embryos are simply passive occupants within their eggs. However, the adaptive significance of this thermoregulatory behavior remains a contentious topic. Here we demonstrate that behavioral thermoregulation by turtle embryos shortened incubation periods which may reduce the duration of exposure to dangerous environments, decreased egg mortality imposed by lethally high temperatures, and synchronized hatching which reduces predation risk. Our study provides empirical evidence that behavioral thermoregulation by turtle embryos is adaptive.
Project description:Although the visual and geomagnetic orientation cues used by sea turtle hatchlings during sea-finding have been well studied, the potential for auditory stimuli to act as an orientation cue has not been explored. We investigated the response of sea turtle hatchlings to natural and anthropogenic noises present on their nesting beaches during sea-finding. The responses of hatchling leatherback sea turtles, Dermochelys coriacea, collected from the Sandy Point National Wildlife Refuge, St. Croix, were measured in the presence of aerial acoustic sounds within hatchlings' hearing range of 50 to 1600 Hz. The highest sound energy produced by beach waves occurs at frequencies 50-1000 Hz, which overlaps with the most sensitive hearing range of hatchling leatherbacks (50-400 Hz). Natural beach wave sounds, which have highest sound energy at frequencies of 50-1000 Hz, may be masked by human conversations (85-650 Hz) and vehicle traffic noise (60-8000 Hz). In the presence of three stimuli, a) beach wave sounds (72.0 dB re: 20 μPa), b) human conversation (72.4 dB re: 20 μPa), and c) vehicle traffic noise (71.1 dB re: 20 μPa), hatchlings exhibited no phonotaxic response (wave sounds: mean angle = 152.1°, p = 0.645; human conversation: mean angle = 67.4°, p = 0.554; traffic noise: mean angle = 125.7°, p = 0.887). These results may be due to the hatchlings being unable to localize sounds in the experimental arena. Visual and auditory cues may also converge to affect sea-finding orientation. Future studies should focus on the localization ability of sea turtles and on the role that sound may play in orientation when combined with other sensory and environmental cues.
Project description:Dispersal during juvenile life stages drives the life-history evolution and dynamics of many marine vertebrate populations. However, the movements of juvenile organisms, too small to track using conventional satellite telemetry devices, remain enigmatic. For sea turtles, this led to the paradigm of the 'lost years' since hatchlings disperse widely with ocean currents. Recently, advances in the miniaturization of tracking technology have permitted the application of nano-tags to track cryptic organisms. Here, the novel use of acoustic nano-tags on neonate loggerhead turtle hatchlings enabled us to witness first-hand their dispersal and behaviour during their first day at sea. We tracked hatchlings distances of up to 15 km and documented their rapid transport (up to 60 m min(-1)) with surface current flows passing their natal areas. Tracking was complemented with laboratory observations to monitor swimming behaviours over longer periods which highlighted (i) a positive correlation between swimming activity levels and body size and (ii) population-specific swimming behaviours (e.g. nocturnal inactivity) suggesting local oceanic conditions drive the evolution of innate swimming behaviours. Knowledge of the swimming behaviours of small organisms is crucial to improve the accuracy of ocean model simulations used to predict the fate of these organisms and determine resultant population-level implications into adulthood.
Project description:The decision of females to nest communally has important consequences for reproductive success. While often associated with reduced energetic expenditure, conspecific aggregations also expose females and offspring to conspecific aggression, exploitation, and infanticide. Intrasexual competition pressures are expected to favor the evolution of conditional strategies, which could be based on simple decision rules (i.e., availability of nesting sites and synchronicity with conspecifics) or on a focal individual's condition or status (i.e., body size). Oviparous reptiles that reproduce seasonally and provide limited to no postnatal care provide ideal systems for disentangling social factors that influence different female reproductive tactics from those present in offspring-rearing environments. In this study, we investigated whether nesting strategies in a West Indian rock iguana, Cyclura nubila caymanensis, vary conditionally with reproductive timing or body size, and evaluated consequences for nesting success. Nesting surveys were conducted on Little Cayman, Cayman Islands, British West Indies for four consecutive years. Use of high-density nesting sites was increasingly favored up to seasonal nesting activity peaks, after which nesting was generally restricted to low-density nesting areas. Although larger females were not more likely than smaller females to nest in high-density areas, larger females nested earlier and gained access to priority oviposition sites. Smaller females constructed nests later in the season, apparently foregoing investment in extended nest defense. Late-season nests were also constructed at shallower depths and exhibited shorter incubation periods. While nest depth and incubation length had significant effects on reproductive outcomes, so did local nest densities. Higher densities were associated with significant declines in hatching success, with up to 20% of egg-filled nests experiencing later intrusion by a conspecific. Despite these risks, nests in high-density areas were significantly more successful than elsewhere due to the benefits of greater chamber depths and longer incubation times. These results imply that communal nest sites convey honest signals of habitat quality, but that gaining and defending priority oviposition sites requires competitive ability.