Unknown

Dataset Information

0

Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae.


ABSTRACT: The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis transcriptional regulator Bas1p were strictly required for anaerobic growth on minimal medium, and this was similarly due to l-serine limitation in bas1 mutants. The induction of one-carbon metabolism during anaerobiosis is needed to increase the supply of l-serine from the glycine and threonine pathways. Using a number of experimental approaches, we demonstrate that these transcription regulators play vital roles in regulating l-serine biosynthesis in the face of increased demand during adaptation to anaerobiosis. This increased l-serine requirement is most likely due to anaerobic remodeling of the cell wall, involving de novo synthesis of a large number of very serine-rich mannoproteins and an increase in the total serine content of the cell wall. During anaerobic starvation for l-serine, this essential amino acid is preferentially directed to the cell wall, indicating the existence of a regulatory mechanism to balance competing cellular demands.

SUBMITTER: Tsoi BM 

PROVIDER: S-EPMC2670125 | biostudies-literature | 2009 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae.

Tsoi Bonny M BM   Beckhouse Anthony G AG   Gelling Cristy L CL   Raftery Mark J MJ   Chiu Joyce J   Tsoi Abraham M AM   Lauterbach Lars L   Rogers Peter J PJ   Higgins Vincent J VJ   Dawes Ian W IW  

The Journal of biological chemistry 20090218 17


The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis tra  ...[more]

Similar Datasets

| S-EPMC1223154 | biostudies-other
| S-EPMC2725562 | biostudies-literature
| S-EPMC5555487 | biostudies-literature
| S-EPMC4068694 | biostudies-literature
| S-EPMC2547041 | biostudies-literature
| S-EPMC1855933 | biostudies-literature
| S-EPMC6379982 | biostudies-literature
| S-EPMC37472 | biostudies-literature
2009-02-02 | GSE11754 | GEO
2008-07-30 | GSE10066 | GEO