Unknown

Dataset Information

0

Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members.


ABSTRACT: Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been traditionally seen as proteins packaging RNA nonspecifically into ribonucleoprotein particles (RNPs), but evidence suggests specific cellular functions on discrete target pre-mRNAs. Here we report genome-wide analysis of alternative splicing patterns regulated by four Drosophila homologs of the mammalian hnRNP A/B family (hrp36, hrp38, hrp40, and hrp48). Analysis of the global RNA-binding distributions of each protein revealed both small and extensively bound regions on target transcripts. A significant subset of RNAs were bound and regulated by more than one hnRNP protein, revealing a combinatorial network of interactions. In vitro RNA-binding site selection experiments (SELEX) identified distinct binding motif specificities for each protein, which were overrepresented in their respective regulated and bound transcripts. These results indicate that individual heterogeneous ribonucleoproteins have specific affinities for overlapping, but distinct, populations of target pre-mRNAs controlling their patterns of RNA processing.

SUBMITTER: Blanchette M 

PROVIDER: S-EPMC2674966 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members.

Blanchette Marco M   Green Richard E RE   MacArthur Stewart S   Brooks Angela N AN   Brenner Steven E SE   Eisen Michael B MB   Rio Donald C DC  

Molecular cell 20090201 4


Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been traditionally seen as proteins packaging RNA nonspecifically into ribonucleoprotein particles (RNPs), but evidence suggests specific cellular functions on discrete target pre-mRNAs. Here we report genome-wide analysis of alternative splicing patterns regulated by four Drosophila homologs of the mammalian hnRNP A/B family (hrp36, hrp38, hrp40, and hrp48). Analysis of the global RNA-binding distributions of each protein revealed both smal  ...[more]

Similar Datasets

2008-12-30 | GSE13940 | GEO
| PRJNA110279 | ENA
| S-EPMC9348792 | biostudies-literature
| S-EPMC7828143 | biostudies-literature
| S-EPMC4336826 | biostudies-literature
| S-EPMC3796306 | biostudies-literature
| S-EPMC10651857 | biostudies-literature
| S-EPMC1326234 | biostudies-literature
| S-EPMC4079960 | biostudies-literature
| S-EPMC4526142 | biostudies-literature