Analysis of variance components reveals the contribution of sample processing to transcript variation.
Ontology highlight
ABSTRACT: The proper design of DNA microarray experiments requires knowledge of biological and technical variation of the studied biological model. For the filamentous fungus Aspergillus niger, a fast, quantitative real-time PCR (qPCR)-based hierarchical experimental design was used to determine this variation. Analysis of variance components determined the contribution of each processing step to total variation: 68% is due to differences in day-to-day handling and processing, while the fermentor vessel, cDNA synthesis, and qPCR measurement each contributed equally to the remainder of variation. The global transcriptional response to d-xylose was analyzed using Affymetrix microarrays. Twenty-four statistically differentially expressed genes were identified. These encode enzymes required to degrade and metabolize D-xylose-containing polysaccharides, as well as complementary enzymes required to metabolize complex polymers likely present in the vicinity of D-xylose-containing substrates. These results confirm previous findings that the d-xylose signal is interpreted by the fungus as the availability of a multitude of complex polysaccharides. Measurement of a limited number of transcripts in a defined experimental setup followed by analysis of variance components is a fast and reliable method to determine biological and technical variation present in qPCR and microarray studies. This approach provides important parameters for the experimental design of batch-grown filamentous cultures and facilitates the evaluation and interpretation of microarray data.
SUBMITTER: van der Veen D
PROVIDER: S-EPMC2675206 | biostudies-literature | 2009 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA