Unknown

Dataset Information

0

Alkane inducible proteins in Geobacillus thermoleovorans B23.


ABSTRACT: BACKGROUND: Initial step of beta-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. RESULTS: An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. CONCLUSION: We first suggested that peroxisomal beta-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

SUBMITTER: Kato T 

PROVIDER: S-EPMC2676291 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alkane inducible proteins in Geobacillus thermoleovorans B23.

Kato Tomohisa T   Miyanaga Asuka A   Kanaya Shigenori S   Morikawa Masaaki M  

BMC microbiology 20090325


<h4>Background</h4>Initial step of beta-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under hig  ...[more]

Similar Datasets

| S-EPMC3828315 | biostudies-other
| PRJDB1475 | ENA
| S-EPMC6033979 | biostudies-literature
| S-EPMC3294819 | biostudies-literature
| PRJNA83141 | ENA
| PRJNA556596 | ENA
| S-EPMC7291097 | biostudies-literature
| S-EPMC4735910 | biostudies-literature
| PRJNA76489 | ENA
| S-EPMC8752141 | biostudies-literature