Ontology highlight
ABSTRACT: Background
Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE) gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements than traditional two-dimensional methods. A new semi-automated tool (4DLVQ) for volume measurements in RT3DE has been developed. We sought to evaluate the accuracy and repeatability of this method compared to a 3D echo standard.Methods
LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were compared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35 patients. Repeated measurements were performed to investigate inter- and intra-observer variability.Results
Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (p < 0.001). Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (p = NS), with bias and 95% limits of agreement of 2.1 +/- 21 ml, -0.88 +/- 17 ml, and 1.6 +/- 11% for EDV, ESV, and EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 +/- 6.2 ml vs. 7.7 +/- 7.3 ml for EDV, 5.5 +/- 5.6 ml vs. 5.0 +/- 5.9 ml for ESV, and 3.0 +/- 2.7% vs. 2.1 +/- 2.0% for EF (p = NS). The inter-observer variability of 4DLVQ vs. TomTec was 9.0 +/- 5.9 ml vs. 17 +/- 6.3 ml for EDV (p < 0.05), 5.0 +/- 3.6 ml vs. 12 +/- 7.7 ml for ESV (p < 0.05), and 2.7 +/- 2.8% vs. 3.0 +/- 2.1% for EF (p = NS).Conclusion
In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with good agreement compared to another RT3DE volume quantification tool.
SUBMITTER: Hansegard J
PROVIDER: S-EPMC2678991 | biostudies-literature |
REPOSITORIES: biostudies-literature