Unknown

Dataset Information

0

Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F.


ABSTRACT: RNAs of many positive strand RNA viruses lack a 5' cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3'-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the approximately 100-nucleotide PEMV RNA 2 CITE (PTE), and mutagenesis revealed that it forms a long, bulged helix that branches into two short stem-loops, with a possible pseudoknot interaction between a C-rich bulge at the branch point and a G-rich bulge in the main helix. The PTE inhibited translation in trans, and addition of eIF4F, but not eIFiso4F, restored translation. Filter binding assays revealed that the PTE binds eIF4F and its eIF4E subunit with high affinity. Tight binding required an intact cap-binding pocket in eIF4E. Among many PTE mutants, there was a strong correlation between PTE-eIF4E binding affinity and ability to stimulate cap-independent translation. We conclude that the PTE recruits eIF4F by binding eIF4E. The PTE represents a different class of translation enhancer element, as defined by its structure and ability to bind eIF4E in the absence of an m(7)G cap.

SUBMITTER: Wang Z 

PROVIDER: S-EPMC2682867 | biostudies-literature | 2009 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F.

Wang Zhaohui Z   Treder Krzysztof K   Miller W Allen WA  

The Journal of biological chemistry 20090310 21


RNAs of many positive strand RNA viruses lack a 5' cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3'-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the approximately 100-nucleotide PEMV RNA 2 CITE (PTE),  ...[more]

Similar Datasets

| S-EPMC3113551 | biostudies-literature
| S-EPMC2168979 | biostudies-literature
| S-EPMC5913006 | biostudies-literature
| S-EPMC5392583 | biostudies-literature
| S-EPMC6638222 | biostudies-literature
| S-EPMC3541521 | biostudies-literature
| S-EPMC7844027 | biostudies-literature
| S-EPMC3281608 | biostudies-literature
| S-EPMC9371892 | biostudies-literature
| S-EPMC1370050 | biostudies-other