Unknown

Dataset Information

0

Medaka: a promising model animal for comparative population genomics.


ABSTRACT: BACKGROUND: Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (Oryzias latipes) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria. FINDINGS: Using Oryzias species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection. CONCLUSION: These results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations.

SUBMITTER: Matsumoto Y 

PROVIDER: S-EPMC2683866 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

Medaka: a promising model animal for comparative population genomics.

Matsumoto Yoshifumi Y   Oota Hiroki H   Asaoka Yoichi Y   Nishina Hiroshi H   Watanabe Koji K   Bujnicki Janusz M JM   Oda Shoji S   Kawamura Shoji S   Mitani Hiroshi H  

BMC research notes 20090510


<h4>Background</h4>Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate  ...[more]

Similar Datasets

| S-EPMC2714311 | biostudies-literature
| S-EPMC1461045 | biostudies-other
2023-11-02 | MSV000093277 | MassIVE
| PRJEB61645 | ENA
| PRJEB4307 | ENA
| S-EPMC3417630 | biostudies-literature
| S-EPMC9701381 | biostudies-literature
2023-11-02 | MSV000093277 | GNPS
| S-EPMC5531767 | biostudies-literature
| S-EPMC7459204 | biostudies-literature