Unknown

Dataset Information

0

A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning.


ABSTRACT: Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP(2). We propose that asymmetric generation of PIP(2) by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.

SUBMITTER: Panbianco C 

PROVIDER: S-EPMC2686839 | biostudies-literature | 2008 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning.

Panbianco Costanza C   Weinkove David D   Zanin Esther E   Jones David D   Divecha Nullin N   Gotta Monica M   Ahringer Julie J  

Developmental cell 20080801 2


Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regula  ...[more]

Similar Datasets

| S-EPMC4586735 | biostudies-literature
| S-EPMC4829500 | biostudies-literature
| S-EPMC2671557 | biostudies-literature
| S-EPMC3797517 | biostudies-other
| S-EPMC8792338 | biostudies-literature
| S-EPMC6726907 | biostudies-literature
| S-EPMC2043561 | biostudies-literature
| S-EPMC4450052 | biostudies-literature
| S-EPMC2265398 | biostudies-literature
| S-SCDT-EMBOR-2018-47495-T | biostudies-other