ABSTRACT: Campylobacter jejuni colonization of chickens is presumably dependent upon multiple surface-exposed proteins termed adhesins. Putative C. jejuni adhesins include CadF, CapA, JlpA, major outer membrane protein, PEB1, Cj1279c, and Cj1349c. We examined the genetic relatedness of 97 C. jejuni isolates recovered from human, poultry, bovine, porcine, ovine, and canine sources by multilocus sequence typing (MLST) and examined their profile of putative adhesin-encoding genes by dot blot hybridization. To assess the individual contribution of each protein in bacterium-host cell adherence, the C. jejuni genes encoding the putative adhesins were disrupted by insertional mutagenesis. The phenotype of each mutant was judged by performing in vitro cell adherence assays with chicken LMH hepatocellular carcinoma epithelial cells and in vivo colonization assays with broiler chicks. MLST analysis indicated that the C. jejuni isolates utilized in this study were genetically diverse. Dot blot hybridization revealed that the C. jejuni genes encoding the putative adhesins, with the exception of capA, were conserved among the isolates. The C. jejuni CadF, CapA, Cj1279c, and Cj1349c proteins were found to play a significant role in the bacterium's in vitro adherence to chicken epithelial cells, while CadF, PEB1, and Cj1279c were determined to play a significant role in the bacterium's in vivo colonization of broiler chicks. Collectively, the data indicate that Cj1279c is a novel adhesin. Because Cj1279c harbors fibronectin type III domains, we designated the protein FlpA, for fibronectin-like protein A.