Unknown

Dataset Information

0

Differential gene expression in the salivary gland during development and onset of xerostomia in Sjogren's syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse.


ABSTRACT: Recently, we reported the development of the C57BL/6.NOD-Aec1Aec2 mouse that carries two genetic intervals derived from the non-obese diabetic (NOD) mouse capable of conferring Sjögren's syndrome (SjS)-like disease in SjS-non-susceptible C57BL/6 mice. In an attempt to define the molecular bases underlying the onset of stomatitis sicca (xerostomia) in this C57BL/6.NOD-Aec1Aec2 mouse model, we have carried out a study using genomic microarray technology.By means of oligonucleotide microarrays, gene expression profiles of salivary glands at 4, 8, 12, 16, and 20 weeks of age were generated for C57BL/6.NOD-Aec1Aec2 male mice. Using Linear Models for Microarray Analysis and B-statistics software, 480 genes were identified as being differentially expressed (P < 0.01 and Q < 0.0001) during the development of SjS-like disease in the salivary glands.The 480 genes could be arranged into four clusters, with each cluster defining a unique pattern of temporal expression, while the individual genes within each cluster could be grouped according to related biological functions. By means of pair-wise analysis, temporal changes in transcript expressions provided profiles indicating that many additional genes are differentially expressed at specific time points during the development of disease. Multiple genes reportedly showing an association with autoimmunity and/or SjS, in either humans or mouse models, were found to exhibit differential expressions, both quantitatively and temporally. Selecting various families of genes associated with specific functions (for example, antibody production, complement, and chemokines), we noted that only a limited number of family members showed differential expressions and these correlated with specific phases of disease.Taking advantage of known functions of these genes, investigators can construct interactive gene pathways, leading to modeling of possible underlying events inducing salivary gland dysfunction. Thus, these different approaches to analyzing microarray data permit the identification of multiple sets of genes of interest whose expressions and expression profiles may correlate with molecular mechanisms, signaling pathways, and/or immunological processes involved in the development and onset of SjS.

SUBMITTER: Nguyen CQ 

PROVIDER: S-EPMC2688207 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential gene expression in the salivary gland during development and onset of xerostomia in Sjögren's syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse.

Nguyen Cuong Q CQ   Sharma Ashok A   Lee Byung Ha BH   She Jin-Xiong JX   McIndoe Richard A RA   Peck Ammon B AB  

Arthritis research & therapy 20090420 2


<h4>Introduction</h4>Recently, we reported the development of the C57BL/6.NOD-Aec1Aec2 mouse that carries two genetic intervals derived from the non-obese diabetic (NOD) mouse capable of conferring Sjögren's syndrome (SjS)-like disease in SjS-non-susceptible C57BL/6 mice. In an attempt to define the molecular bases underlying the onset of stomatitis sicca (xerostomia) in this C57BL/6.NOD-Aec1Aec2 mouse model, we have carried out a study using genomic microarray technology.<h4>Methods</h4>By mean  ...[more]

Similar Datasets

| S-EPMC5153841 | biostudies-literature
2013-06-25 | E-GEOD-48139 | biostudies-arrayexpress
2013-06-25 | GSE48139 | GEO
| S-EPMC8267620 | biostudies-literature
| S-EPMC9570365 | biostudies-literature
| S-EPMC3176054 | biostudies-literature
| S-EPMC4998116 | biostudies-literature
| S-EPMC5405808 | biostudies-literature
| S-EPMC9181468 | biostudies-literature
2009-04-11 | GSE15640 | GEO