PDK1 coordinates survival pathways and beta-adrenergic response in the heart.
Ontology highlight
ABSTRACT: The 3-phosphoinositide-dependent kinase-1 (PDK1) plays an important role in the regulation of cellular responses in multiple organs by mediating the phosphoinositide 3-kinase (PI3-K) signaling pathway through activating AGC kinases. Here we defined the role of PDK1 in controlling cardiac homeostasis. Cardiac expression of PDK1 was significantly decreased in murine models of heart failure. Tamoxifen-inducible and heart-specific disruption of Pdk1 in adult mice caused severe and lethal heart failure, which was associated with apoptotic death of cardiomyocytes and beta(1)-adrenergic receptor (AR) down-regulation. Overexpression of Bcl-2 protein prevented cardiomyocyte apoptosis and improved cardiac function. In addition, PDK1-deficient hearts showed enhanced activity of PI3-Kgamma, leading to robust beta(1)-AR internalization by forming complex with beta-AR kinase 1 (betaARK1). Interference of betaARK1/PI3-Kgamma complex formation by transgenic overexpression of phosphoinositide kinase domain normalized beta(1)-AR trafficking and improved cardiac function. Taken together, these results suggest that PDK1 plays a critical role in cardiac homeostasis in vivo by serving as a dual effector for cell survival and beta-adrenergic response.
SUBMITTER: Ito K
PROVIDER: S-EPMC2688981 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA