Unknown

Dataset Information

0

Peroxide-induced radical formation at TYR385 and TYR504 in human PGHS-1.


ABSTRACT: Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and K(M) value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the K(M) value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.

SUBMITTER: Rogge CE 

PROVIDER: S-EPMC2697118 | biostudies-literature | 2009 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Peroxide-induced radical formation at TYR385 and TYR504 in human PGHS-1.

Rogge Corina E CE   Liu Wen W   Kulmacz Richard J RJ   Tsai Ah-Lim AL  

Journal of inorganic biochemistry 20090417 6


Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radic  ...[more]

Similar Datasets

| S-EPMC6971994 | biostudies-literature
| S-EPMC7187196 | biostudies-literature
| S-EPMC6868006 | biostudies-literature
| S-EPMC5601248 | biostudies-literature
| S-EPMC5027479 | biostudies-literature
| S-EPMC5146283 | biostudies-other
| S-EPMC5756054 | biostudies-literature
| S-EPMC1523326 | biostudies-literature
| S-EPMC8283710 | biostudies-literature
| S-EPMC1184640 | biostudies-other