Unknown

Dataset Information

0

Type II NADH dehydrogenase inhibitor 1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrial inner-membrane potential and ATP depletion in Toxoplasma gondii.


ABSTRACT: The apicomplexan parasite Toxoplasma gondii expresses type II NADH dehydrogenases (NDH2s) instead of canonical complex I at the inner mitochondrial membrane. These non-proton-pumping enzymes are considered to be promising drug targets due to their absence in mammalian cells. We recently showed by inhibition kinetics that T. gondii NDH2-I is a target of the quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ), which inhibits T. gondii replication in the nanomolar range. In this study, the cationic fluorescent probes Mitotracker and DiOC(6)(3) (3,3'-dihexyloxacarbocyanine iodine) were used to monitor the influence of HDQ on the mitochondrial inner membrane potential (Delta Psi m) in T. gondii. Real-time imaging revealed that nanomolar HDQ concentrations led to a Delta Psi m collapse within minutes, which is followed by severe ATP depletions of 30% after 1 h and 70% after 24 h. Delta Psi m depolarization was attenuated when substrates for other dehydrogenases that can donate electrons to ubiquinone were added to digitonin-permeabilized cells or when infected cultures were treated with the F(o)-ATPase inhibitor oligomycin. A prolonged treatment with sublethal concentrations of HDQ induced differentiation into bradyzoites. This dormant stage is likely to be less dependent on the Delta Psi m, since Delta Psi m-positive parasites were found at a significantly lower frequency in alkaline-pH-induced bradyzoites than in tachyzoites. Together, our studies reveal that oxidative phosphorylation is essential for maintaining the ATP level in the fast-growing tachyzoite stage and that HDQ interferes with this pathway by inhibiting the electron transport chain at the level of ubiquinone reduction.

SUBMITTER: Lin SS 

PROVIDER: S-EPMC2698307 | biostudies-literature | 2009 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Type II NADH dehydrogenase inhibitor 1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrial inner-membrane potential and ATP depletion in Toxoplasma gondii.

Lin San San SS   Gross Uwe U   Bohne Wolfgang W  

Eukaryotic cell 20090313 6


The apicomplexan parasite Toxoplasma gondii expresses type II NADH dehydrogenases (NDH2s) instead of canonical complex I at the inner mitochondrial membrane. These non-proton-pumping enzymes are considered to be promising drug targets due to their absence in mammalian cells. We recently showed by inhibition kinetics that T. gondii NDH2-I is a target of the quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ), which inhibits T. gondii replication in the nanomolar range. In this study,  ...[more]

Similar Datasets

| S-EPMC1855512 | biostudies-literature
| S-EPMC4134349 | biostudies-literature
| S-EPMC3628096 | biostudies-literature
| S-EPMC6795473 | biostudies-literature
| S-EPMC5316358 | biostudies-literature
2024-03-26 | GSE262241 | GEO
| S-EPMC8144581 | biostudies-literature
| S-EPMC6059495 | biostudies-literature
| S-EPMC5278733 | biostudies-literature
| S-EPMC8793678 | biostudies-literature