Unknown

Dataset Information

0

Universal oscillations in counting statistics.


ABSTRACT: Noise is a result of stochastic processes that originate from quantum or classical sources. Higher-order cumulants of the probability distribution underlying the stochastic events are believed to contain details that characterize the correlations within a given noise source and its interaction with the environment, but they are often difficult to measure. Here we report measurements of the transient cumulants n(m) of the number n of passed charges to very high orders (up to m = 15) for electron transport through a quantum dot. For large m, the cumulants display striking oscillations as functions of measurement time with magnitudes that grow factorially with m. Using mathematical properties of high-order derivatives in the complex plane we show that the oscillations of the cumulants in fact constitute a universal phenomenon, appearing as functions of almost any parameter, including time in the transient regime. These ubiquitous oscillations and the factorial growth are system-independent and our theory provides a unified interpretation of previous theoretical studies of high-order cumulants as well as our new experimental data.

SUBMITTER: Flindt C 

PROVIDER: S-EPMC2700917 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3824171 | biostudies-other
| S-EPMC5799205 | biostudies-literature
| S-EPMC4015027 | biostudies-other
| S-EPMC4354005 | biostudies-other
| S-EPMC4647222 | biostudies-literature
| S-EPMC3805975 | biostudies-other
| S-EPMC4476256 | biostudies-other
| S-EPMC5815621 | biostudies-literature
| S-EPMC6754416 | biostudies-literature
| S-EPMC7753937 | biostudies-literature