Project description:Type 1 diabetes (T1D) is one of the most widely studied complex genetic disorders, and the genes in HLA are reported to account for approximately 40-50% of the familial aggregation of T1D. The major genetic determinants of this disease are polymorphisms of class II HLA genes encoding DQ and DR. The DR-DQ haplotypes conferring the highest risk are DRB1*03:01-DQA1*05:01-DQB1*02:01 (abbreviated "DR3") and DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (or DQB1*02; abbreviated "DR4"). The risk is much higher for the heterozygote formed by these two haplotypes (OR?=?16.59; 95% CI, 13.7-20.1) than for either of the homozygotes (DR3/DR3, OR?=?6.32; 95% CI, 5.12-7.80; DR4/DR4, OR?=?5.68; 95% CI, 3.91). In addition, some haplotypes confer strong protection from disease, such as DRB1*15:01-DQA1*01:02-DQB1*06:02 (abbreviated "DR2"; OR?=?0.03; 95% CI, 0.01-0.07). After adjusting for the genetic correlation with DR and DQ, significant associations can be seen for HLA class II DPB1 alleles, in particular, DPB1*04:02, DPB1*03:01, and DPB1*02:02. Outside of the class II region, the strongest susceptibility is conferred by class I allele B*39:06 (OR =10.31; 95% CI, 4.21-25.1) and other HLA-B alleles. In addition, several loci in the class III region are reported to be associated with T1D, as are some loci telomeric to class I. Not surprisingly, current approaches for the prediction of T1D in screening studies take advantage of genotyping HLA-DR and HLA-DQ loci, which is then combined with family history and screening for autoantibodies directed against islet-cell antigens. Inclusion of additional moderate HLA risk haplotypes may help identify the majority of children with T1D before the onset of the disease.
Project description:BackgroundElevated homocysteine (Hc) levels have a well-established and clear causal relationship to epithelial damage leading to coronary artery disease. Furthermore, it is strongly associated with other metabolic syndrome variables, such as hypertension, which is correlated with type II diabetes mellitus (T2DM). Studies on T2DM in relation to Hc levels have shown both positive and negative associations. The aim of the present study is to examine the relationship between Hc levels and risk of T2DM in the Lebanese population.MethodsWe sought to identify whether Hc associates positively or negatively with diabetes in a case-control study, where 2755 subjects enrolled from patients who had been catheterized for coronary artery diagnosis and treatment. We further sought to identify whether the gene variant MTHFR 667C>T is associated with T2DM, and how Hc and MTHFR 667C>T also impact other correlates of T2DM, including the widely used diuretics in this study population.ResultsWe found that Hc levels were significantly reduced among subjects with diabetes compared to those without diabetes when adjusted for all potential confounders (OR 0.640; 95% CI [0.44-0.92]; p = 0.0200). The associations between Hc levels and other variates contradicted the result: hypertension associates positively with high Hc levels, and with T2DM. The MTHFR 667C>T only associated significantly with high Hc levels.ConclusionThese results suggest population-specific variations among a range of mechanisms that modulate the association of Hc and T2DM, providing a probe for future studies.
Project description:To provide an overview of the genetics of type 2 diabetes in the context of recent progress in the understanding of the genetic architecture of the disease and its applicability to the pathogenesis of the disease as well as efforts to individualize therapy in type 2 diabetes. Efforts are underway to understand how these loci alter measurable physiologic processes in nondiabetic humans. However, it is important to understand the potential pitfalls in such studies and the limitations underlying measurement of insulin secretion and action using qualitative methodologies.The availability of large population-based cohorts and the ease with which large numbers of common genetic variants can be genotyped has enabled the discovery of multiple loci and pathways associated with type 2 diabetes. Recent efforts examining quantitative traits such as fasting glucose concentrations have led to the discovery of other genes likely to be important in the development of diabetes.The past 4 years have witnessed a significant increase in our understanding of genetic predisposition to type 2 diabetes. Hopefully more progress will be made in applying this knowledge to the pathophysiology of type 2 diabetes in the coming years.
Project description:Type 1 diabetes (T1D) results from immune-mediated loss of pancreatic beta cells leading to insulin deficiency. It is the most common form of diabetes in children, and its incidence is on the rise. This article reviews the current knowledge on the genetics of T1D. In particular, we discuss the influence of HLA and non-HLA genes on T1D risk and disease progression through the preclinical stages of the disease, and the development of genetic scores that can be applied to disease prediction. Racial/ethnic differences, challenges and future directions in the genetics of T1D are also discussed.
Project description:BackgroundType 1 diabetes, a multifactorial disease with a strong genetic component, is caused by the autoimmune destruction of pancreatic β cells. The major susceptibility locus maps to the HLA class II genes at 6p21, although more than 40 non-HLA susceptibility gene markers have been confirmed.ContentAlthough HLA class II alleles account for up to 30%-50% of genetic type 1 diabetes risk, multiple non-MHC loci contribute to disease risk with smaller effects. These include the insulin, PTPN22, CTLA4, IL2RA, IFIH1, and other recently discovered loci. Genomewide association studies performed with high-density single-nucleotide-polymorphism genotyping platforms have provided evidence for a number of novel loci, although fine mapping and characterization of these new regions remain to be performed. Children born with the high-risk genotype HLADR3/4-DQ8 comprise almost 50% of children who develop antiislet autoimmunity by the age of 5 years. Genetic risk for type 1 diabetes can be further stratified by selection of children with susceptible genotypes at other diabetes genes, by selection of children with a multiple family history of diabetes, and/or by selection of relatives that are HLA identical to the proband.SummaryChildren with the HLA-risk genotypes DR3/4-DQ8 or DR4/DR4 who have a family history of type 1 diabetes have more than a 1 in 5 risk for developing islet autoantibodies during childhood, and children with the same HLA-risk genotype but no family history have approximately a 1 in 20 risk. Determining extreme genetic risk is a prerequisite for the implementation of primary prevention trials, which are now underway for relatives of individuals with type 1 diabetes.
Project description:Since fulminant type 1 diabetes was reported as a distinct subtype of type 1 diabetes in 2000, the Committee on Type 1 diabetes, Japan Diabetes Society has continuously recruited patients and conducted genomic research to elucidate the genetic basis of fulminant type 1 diabetes. The contribution of the human leukocyte antigen complex (HLA) to genetic susceptibility to fulminant type 1 diabetes was compared with that of other subtypes in 2009. The alleles and haplotypes associated with fulminant type 1 diabetes were found to be different from acute-onset and slowly progressive type 1 diabetes. DRB1*15:01-DQB1*06:02, a protective haplotype against acute-onset type 1 diabetes, does not provide protection against fulminant type 1 diabetes and DRB1*08:02-DQB1*03:02, a susceptible haplotype to acute-onset type 1 diabetes, does not confer susceptibility to fulminant type 1 diabetes. Recently, the first genome-wide association study (GWAS) of fulminant type 1 diabetes was performed in Japanese individuals. A strong association was observed with multiple single nucleotide polymorphisms (SNPs) in the HLA region, and the strongest association was observed with rs9268853 in the class II DR region. In addition, 11 SNPs outside the HLA region showed some evidence of association with the disease. In particular, rs11170445 in CSAD/lnc-ITGB7-1 on chromosome 12q13.13 showed an association at a genome-wide significance level. Fine mapping revealed that rs3782151 in CSAD/lnc-ITGB7-1 showed the lowest P value. CSAD/lnc-ITGB7-1 was found to be strongly associated with susceptibility to fulminant, but not classical, autoimmune type 1 diabetes, implicating this locus in the distinct phenotype of fulminant type 1 diabetes.
Project description:The global epidemic of type 2 diabetes mellitus (T2D) is one of the most challenging problems of the 21(st) century leading cause of and the fifth death worldwide. Substantial evidence suggests that T2D is a multifactorial disease with a strong genetic component. Recent genome-wide association studies (GWAS) have successfully identified and replicated nearly 75 susceptibility loci associated with T2D and related metabolic traits, mostly in Europeans, and some in African, and South Asian populations. The GWAS serve as a starting point for future genetic and functional studies since the mechanisms of action by which these associated loci influence disease is still unclear and it is difficult to predict potential implication of these findings in clinical settings. Despite extensive replication, no study has unequivocally demonstrated their clinical role in the disease management beyond progression to T2D from impaired glucose tolerance. However, these studies are revealing new molecular pathways underlying diabetes etiology, gene-environment interactions, epigenetic modifications, and gene function. This review highlights evolving progress made in the rapidly moving field of T2D genetics that is starting to unravel the pathophysiology of a complex phenotype and has potential to show clinical relevance in the near future.
Project description:The past 3 years have seen highly significant genetic effects identified for a wide variety of common complex diseases, including the airway disorders of asthma and chronic obstructive pulmonary disease. It appears that only a portion of the genetically mediated susceptibility to complex diseases has been identified, and there is much left to be discovered. This review briefly describes the results of the genome-wide association studies of asthma and gives an overview of the parallel and increasingly large-scale studies that are taking place with chronic obstructive pulmonary disease. The future impact is discussed of technological advances that allow increasingly large-scale gene expression studies, next-generation sequencing, and genome-wide testing for epigenetic effects. The use of genetic technology to examine the airway microbiota that interact with the mucosa in health and disease is described.
Project description:Diabetes mellitus is a major risk factor for coronary heart disease (CHD). The major form of diabetes mellitus is type 2 diabetes mellitus (T2D), which is thus largely responsible for the CHD association in the general population. Recent years have seen major advances in the genetics of T2D, principally through ever-increasing large-scale genome-wide association studies. This article addresses the question of whether this expanding knowledge of the genomics of T2D provides insight into the etiologic relationship between T2D and CHD. We will investigate this relationship by reviewing the evidence for shared genetic loci between T2D and CHD; by examining the formal testing of this interaction (Mendelian randomization studies assessing whether T2D is causal for CHD); and then turn to the implications of this genetic relationship for therapies for CHD, for therapies for T2D, and for therapies that affect both. In conclusion, the growing knowledge of the genetic relationship between T2D and CHD is beginning to provide the promise for improved prevention and treatment of both disorders.
Project description:Genome-wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry-specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P-value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all-inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry-specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry-specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry-specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine.