Novel interactions of glycosaminoglycans and bacterial glycolipids mediate binding of enterococci to human cells.
Ontology highlight
ABSTRACT: Enterococcus faecalis is among the most important nosocomial pathogens. The intestinal mucosa is considered to be the main site used by these bacteria for entrance and dissemination. A better understanding of the mechanisms involved in colonization and invasion of enterococci may help to devise methods to prevent infections in hospitalized patients. Glycosaminoglycans, which are present on the surface of all eukaryotic cells, were investigated with regard to their role as host receptors for adhesion of E. faecalis. Competitive binding assays, enzymatic digestion, and reduction of the sulfation of the glycosaminoglycan chains indicated that heparin and heparan sulfate, but not chondroitin sulfate B, played important roles in adhesion of E. faecalis 12030 to Caco2 cells. By using proteinases and carbohydrate oxidation by sodium meta-periodate to modify the bacterial surface, it could be demonstrated that a sugar-containing molecule rather than a protein is the bacterial ligand mediating adhesion to eukaryotic cells. Preincubation of Caco2 cells with the enterococcal glycolipid diglucosyldiacylglycerol but not other carbohydrate cell wall components inhibited bacterial binding. These results may indicate that heparin and/or heparan sulfate on host epithelial cells and diglucosyldiacylglycerol, either itself or as a partial structure of lipoteichoic acid, are involved in enterococcal adhesion to colonic epithelia, the first step in translocation from the intestinal tract.
SUBMITTER: Sava IG
PROVIDER: S-EPMC2709396 | biostudies-literature | 2009 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA