Project description:Platelet-derived growth factor (PDGF) stimulates the proliferation of Balb/c-3T3 fibroblasts through binding and subsequent activation of PDGF receptors. Activation of the PDGF receptors has been proposed to involve receptor dimerization. PDGF-AB has been shown to bind PDGF alpha and beta receptor subunits to form PDGF alpha beta and alpha alpha receptor dimers. In this paper we demonstrate that, following the down-regulation of PDGF alpha receptors, the binding of PDGF-AB to beta receptors occurred at 37 degrees C but not at 4 degrees C. PDGF-AB stimulated the phosphorylation of PDGF beta receptor monomers in cells depleted of PDGF alpha receptors by prior exposure to PDGF-AA.
Project description:The regulation of mesenchymal cell growth by signaling molecules plays an important role in maintaining tissue functions. Aberrant mesenchymal cell proliferation caused by disruption of this regulatory process leads to pathogenetic events such as fibrosis. In the current study we have identified a novel nuclear factor, Phf14, which controls the proliferation of mesenchymal cells by regulating PDGFRα expression. Phf14-null mice died just after birth due to respiratory failure. Histological analyses of the lungs of these mice showed interstitial hyperplasia with an increased number of PDGFRα(+) mesenchymal cells. PDGFRα expression was elevated in Phf14-null mesenchymal fibroblasts, resulting in increased proliferation. We demonstrated that Phf14 acts as a transcription factor that directly represses PDGFRα expression. Based on these results, we used an antibody against PDGFRα to successfully treat mouse lung fibrosis. This study shows that Phf14 acts as a negative regulator of PDGFRα expression in mesenchymal cells undergoing normal and abnormal proliferation, and is a potential target for new treatments of lung fibrosis.
Project description:Certain platelet-derived growth factor (PDGF) isoforms are associated with proliferative vitreoretinopathy (PVR), a sight-threatening complication that develops in a subset of patients recovering from retinal reattachment surgery. Although these PDGF isoforms are abundant in the vitreous of patients and experimental animals with PVR, they make only a minor contribution to activating PDGF receptor α (PDGFRα) and driving experimental PVR. Rather, growth factors outside of the PDGF family are the primary (and indirect) agonists of PDGFRα. These observations beg the question of why vitreal PDGFs fail to activate PDGFRα. We report here that vitreous contains an inhibitor of PDGF-dependent activation of PDGFRα and that a major portion of this inhibitory activity is due to vascular endothelial cell growth factor A (VEGF-A). Furthermore, recombinant VEGF-A competitively blocks PDGF-dependent binding and activation of PDGFR, signaling events, and cellular responses. These findings unveil a previously unappreciated relationship between distant members of the PDGF/VEGF family that may contribute to pathogenesis of a blinding eye disease.
Project description:Mesangial cells express platelet-derived growth factor (PDGF) A- and B-chain mRNA and release PDGF. Several polypeptide growth factors, including PDGF itself, induce PDGF A- and B- chain mRNA abundance. To understand the molecular mechanisms associated with the changes in mRNA abundance, we measured the effects of PDGF BB homodimer on PDGF A- and B-chain gene transcription in cultured mesangial cells. The data demonstrate 2- and 4-fold increases in PDGF A-chain gene transcription in response to PDGF BB homodimer at 5 and 24 h time points respectively. PDGF B-chain gene transcription was also induced approximately 3-fold at 2, 5 and 24 h time points in response to treatment with PDGF BB homodimer. The effect of PDGF BB on the half-life of PDGF A- as well as PDGF B-chain mRNA was measured directly by the pulse-chase method. There was no effect on PDGF A-chain mRNA half-life whereas PDGF B-chain mRNA half-life was increased 1.5-fold. These studies indicate that, in human mesangial cells, the increase in the levels of PDGF A- and B-chain mRNA in response to PDGF- receptor(s) activation is mediated at the level of gene transcription. In addition, the regulation of PDGF B- but not PDGF A-chain gene involves increased mRNA stability. Mesangial cells are a useful model for studying molecular mechanisms of PDGF- gene regulation in non-transformed human cells.
Project description:Malignant cells are capable of influencing the microenvironment in a manner that facilitates tumor cell survival. Bidirectional crosstalk between chronic lymphocytic leukemic (CLL) cells and marrow-derived mesenchymal stromal cells (MSCs) activates both cell types. In this study, we observed that the conditioned medium (CM) obtained from CLL cells was able to induce Akt activation in MSC. Subsequent studies investigated the mechanism of MSC activation mediated by CLL-CM. Platelet-derived growth factor receptors (PDGFRs) were selectively activated in MSCs by CLL-CM and found to be critical receptors for CLL-CM-driven MSC proliferation and MSC Akt activation. The known ligands of PDGFR, platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF), were detected in CLL-CM, but PDGF was the predominant ligand involved in the CM-mediated PDGFR activation. Both PDGF and VEGF were found to be elevated in the plasma of CLL patients with a positive association for high-risk factors and more advanced stage. Finally, we demonstrated that PDGF induced MSC VEGF production through a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. These results show that PDGF-PDGFR signaling influences at least the MSC in the microenvironment of CLL and may play a role in the induction of an angiogenic switch known to be permissive for disease progression.
Project description:Platelet-derived growth factor CC (PDGF-CC) is important during foetal development but also in pathogenesis of neurologic diseases, cancer and fibrosis. We have previously demonstrated that blocking the PDGF-CC/PDGF receptor alpha (PDGFRα) axis resulted in reduction of stroke volume and cerebrovascular permeability after experimentally induced stroke. Recently, we could translate these findings into the clinic showing that imatinib, a small tyrosine kinase inhibitor targeting PDGF receptors, can significantly improve neurological outcome after ischemic stroke in human. Herein we report preclinical toxicological analyses of our newly generated monoclonal anti-human PDGF-CC antibody 6B3 (mAb 6B3) in PDGF-CC humanized mice. Beside histological organ assessment, we also analysed serum, urine, haematological parameters and the general health status of the treated mice. We could not find any indications that mAb 6B3 is toxic or has other significant side effects neither in short, nor in long treatment regimens. Our results indicate that mAb 6B3 can be further developed for clinical use. This opens up the possibility to assess the therapeutic potential of blocking PDGF-CC in diverse pathological conditions such as neurologic diseases, cancer and fibrosis.
Project description:Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties.
Project description:The PDGF (platelet-derived growth factor) family members are potent mitogens for cells of mesenchymal origin and serve as important regulators of cell migration, survival, apoptosis and transformation. Tumour-derived PDGF ligands are thought to function in both autocrine and paracrine manners, activating receptors on tumour and surrounding stromal cells. PDGF-C and -D are secreted as latent dimers, unlike PDGF-A and -B. Cleavage of the CUB domain from the PDGF-C and -D dimers is required for their biological activity. At present, little is known about the proteolytic processing of PDGF-C, the rate-limiting step in the regulation of PDGF-C activity. In the present study we show that the breast carcinoma cell line MCF7, engineered to overexpress PDGF-C, produces proteases capable of cleaving PDGF-C to its active form. Increased PDGF-C expression enhances cell proliferation, anchorage-independent cell growth and tumour cell motility by autocrine signalling. In addition, MCF7-produced PDGF-C induces fibroblast cell migration in a paracrine manner. Interestingly, PDGF-C enhances tumour cell invasion in the presence of fibroblasts, suggesting a role for tumour-derived PDGF-C in tumour-stromal interactions. In the present study, we identify tPA (tissue plasminogen activator) and matriptase as major proteases for processing of PDGF-C in MCF7 cells. In in vitro studies, we also show that uPA (urokinase-type plasminogen activator) is able to process PDGF-C. Furthermore, by site-directed mutagenesis, we identify the cleavage site for these proteases in PDGF-C. Lastly, we provide evidence suggesting a two-step proteolytic processing of PDGF-C involving creation of a hemidimer, followed by GFD-D (growth factor domain dimer) generation.
Project description:Brain pericytes not only maintain the anatomical, biochemical and immune blood-brain barrier, but display features of mesenchymal stem cells (MSCs) in vitro. MSCs have pro-regenerative properties attributed to their secretome. However, whether also brain pericytes possess such pro-regenerative capacities is largely unknown. Here we characterize the secretome and microvesicle (MV) release of human brain pericytes mediated by platelet-derived growth factor-BB (PDGF-BB)/PDGF receptor beta (PDGFRβ) signalling. Upon PDGF-BB, pericytes release not only a plethora of growth factors and a panel of cytokines, but also MVs containing BDNF, FGFb, βNGF, VEGF and PLGF, a response that is specific for PDGFRβ signalling and activation of the ERK 1/2 pathway. In contrast, lipopolysaccharide (LPS), an activator of the innate immune system, stimulates the secretion of much higher amounts of mainly inflammatory cytokines and activates the NFκB pathway. Pericytes change their morphology and undergo opposite changes in surface marker expression, respectively. Our findings provide evidence that the secretome of human brain pericytes varies greatly depending on the exogenous stimulus. The differential secretory functions of pericytes may play an important role in either regulating neuroinflammation or contributing to neurorestoration and identify a possible new target cell for neuroregeneration.
Project description:PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.