Unknown

Dataset Information

0

Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.


ABSTRACT: The mitochondrial generation of reactive oxygen species (ROS) plays a central role in many cell signaling pathways, but debate still surrounds its regulation by factors, such as substrate availability, [O2] and metabolic state. Previously, we showed that in isolated mitochondria respiring on succinate, ROS generation was a hyperbolic function of [O2]. In the current study, we used a wide variety of substrates and inhibitors to probe the O2 sensitivity of mitochondrial ROS generation under different metabolic conditions. From such data, the apparent Km for O2 of putative ROS-generating sites within mitochondria was estimated as follows: 0.2, 0.9, 2.0, and 5.0 microM O2 for the complex I flavin site, complex I electron backflow, complex III QO site, and electron transfer flavoprotein quinone oxidoreductase of beta-oxidation, respectively. Differential effects of respiratory inhibitors on ROS generation were also observed at varying [O2]. Based on these data, we hypothesize that at physiological [O2], complex I is a significant source of ROS, whereas the electron transfer flavoprotein quinone oxidoreductase may only contribute to ROS generation at very high [O2]. Furthermore, we suggest that previous discrepancies in the assignment of effects of inhibitors on ROS may be due to differences in experimental [O2]. Finally, the data set (see supplemental material) may be useful in the mathematical modeling of mitochondrial metabolism.

SUBMITTER: Hoffman DL 

PROVIDER: S-EPMC2713566 | biostudies-literature | 2009 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.

Hoffman David L DL   Brookes Paul S PS  

The Journal of biological chemistry 20090414 24


The mitochondrial generation of reactive oxygen species (ROS) plays a central role in many cell signaling pathways, but debate still surrounds its regulation by factors, such as substrate availability, [O2] and metabolic state. Previously, we showed that in isolated mitochondria respiring on succinate, ROS generation was a hyperbolic function of [O2]. In the current study, we used a wide variety of substrates and inhibitors to probe the O2 sensitivity of mitochondrial ROS generation under differ  ...[more]

Similar Datasets

2020-09-15 | GSE157912 | GEO
| S-EPMC7673681 | biostudies-literature
| S-EPMC2892288 | biostudies-literature
| S-EPMC2789320 | biostudies-literature
| S-EPMC4118662 | biostudies-literature
| S-EPMC6945195 | biostudies-literature
| S-EPMC4859372 | biostudies-literature
| S-EPMC1413838 | biostudies-other
| S-EPMC9136105 | biostudies-literature
| S-EPMC6734379 | biostudies-literature