Unknown

Dataset Information

0

Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane.


ABSTRACT: Protein palmitoylation has diverse effects in regulating protein membrane affinity, localization, binding partner interactions, turnover and function. Here, we show that palmitoylation also contributes to the sorting of proteins to the eukaryotic flagellum. African trypanosomes are protozoan pathogens that express a family of unique Ca(2+)-binding proteins, the calflagins, which undergo N-terminal myristoylation and palmitoylation. The localization of calflagins depends on their acylation status. Myristoylation alone is sufficient for membrane association, but, in the absence of palmitoylation, the calflagins localize to the pellicular (cell body) membrane. Palmitoylation, which is mediated by a specific palmitoyl acyltransferase, is then required for subsequent trafficking of calflagin to the flagellar membrane. Coincident with the redistribution of calflagin from the pellicular to the flagellar membrane is their association with lipid rafts, which are highly enriched in the flagellar membrane. Screening of candidate palmitoyl acyltranferases identified a single enzyme, TbPAT7, that is necessary for calflagin palmitoylation and flagellar membrane targeting. Our results implicate protein palmitoylation in flagellar trafficking, and demonstrate the conservation and specificity of palmitoyl acyltransferase activity by DHHC-CRD proteins across kingdoms.

SUBMITTER: Emmer BT 

PROVIDER: S-EPMC2714429 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane.

Emmer Brian T BT   Souther Christina C   Toriello Krista M KM   Olson Cheryl L CL   Epting Conrad L CL   Engman David M DM  

Journal of cell science 20090224 Pt 6


Protein palmitoylation has diverse effects in regulating protein membrane affinity, localization, binding partner interactions, turnover and function. Here, we show that palmitoylation also contributes to the sorting of proteins to the eukaryotic flagellum. African trypanosomes are protozoan pathogens that express a family of unique Ca(2+)-binding proteins, the calflagins, which undergo N-terminal myristoylation and palmitoylation. The localization of calflagins depends on their acylation status  ...[more]

Similar Datasets

| S-EPMC2908390 | biostudies-literature
| S-EPMC6948154 | biostudies-literature
2023-05-14 | GSE222592 | GEO
| S-EPMC2893407 | biostudies-literature
| S-EPMC8182408 | biostudies-literature
| S-EPMC107146 | biostudies-literature
| S-EPMC5036164 | biostudies-literature
| S-EPMC3894612 | biostudies-literature