Unknown

Dataset Information

0

Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site.


ABSTRACT: A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadt(Et))Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Ni(d)-Ni(p)-site model of acetyl-CoA synthase (ACS) (dadt(Et) is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadt(Et)) Ni(tmtu)2] (OTf)2 (1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF2)2(Me)(Py) (5) to a Ni(II)-Ni(0) complex such as [Ni(dadt(Et))Ni(cod)] (3), generated in situ from Ni(dadt(Et)) and Ni(cod)(2), followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF2 is difluoroboryl-dimethylglyoximate). Method ii models the formation of Nip-Me species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH3C(O)SDmp (8) with concomitant formation of Ni(dadt(Et))Ni(CO)2 (9) and Ni(CO)4 plus Ni(dadt(Et)). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)4 is considerably suppressed, and instead the dinuclear Ni(II)-Ni(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF2)2(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)-Nip(0) state as the active species, (ii) The Nid(II)-Nip(0) species could first react with methylcobalamin to afford Nid(II)-Nip(II)-Me, and (iii) CO insertion into the Nip-Me bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)-Nip(0) species.

SUBMITTER: Ito M 

PROVIDER: S-EPMC2715534 | biostudies-literature | 2009 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site.

Ito Mikinao M   Kotera Mai M   Matsumoto Tsuyoshi T   Tatsumi Kazuyuki K  

Proceedings of the National Academy of Sciences of the United States of America 20090707 29


A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadt(Et))Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Ni(d)-Ni(p)-site model of acetyl-CoA synthase (ACS) (dadt(Et) is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadt(Et)) Ni(tmtu)2] (OTf)2 (1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobalox  ...[more]

Similar Datasets

| S-EPMC152983 | biostudies-literature
| S-EPMC2409409 | biostudies-literature
| S-EPMC5819426 | biostudies-literature
| S-EPMC5613768 | biostudies-literature
| S-EPMC5850092 | biostudies-literature
| S-EPMC3760129 | biostudies-literature
| S-EPMC2693717 | biostudies-literature
| S-EPMC5788913 | biostudies-literature
| S-EPMC5000062 | biostudies-other
| S-EPMC5879682 | biostudies-literature