Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression.
Ontology highlight
ABSTRACT: Methamphetamine (mAMPH) is a psychostimulant drug that increases extracellular levels of monoamines throughout the brain. It has previously been observed that a single injection of mAMPH increases immediate early gene (IEG) expression in both the striatum and cerebral cortex. Moreover, this effect is modulated by dopamine and glutamate receptors since systemic administration of dopamine or glutamate antagonists has been found to alter mAMPH-induced striatal and cortical IEG expression. However, because dopamine and glutamate receptors are found in extra-striatal as well as striatal brain regions, studies employing systemic injection of dopamine or glutamate antagonists fail to localize the effects of mAMPH-induced activation. In the present experiments, the roles of striatal dopamine and glutamate receptors in mAMPH-induced gene expression in the striatum and cerebral cortex were examined. The nuclear expression of Fos, the protein product of the IEG c-fos, was quantified in both the striatum and the cortex of animals receiving intrastriatal dopamine or glutamate antagonist administration. Intrastriatal infusion of dopamine (D1 or D2) or glutamate [N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] antagonists affected not only mAMPH-induced striatal, but also cortical, Fos expression. Overall, the effects of the antagonists occurred dose-dependently, in both the infused and non-infused hemispheres, with greater influences occurring in the infused hemisphere. Finally, unilateral intrastriatal infusion of dopamine or glutamate antagonists changed the behavior of the rats from characteristic mAMPH-induced stereotypy to rotation ipsilateral to the infusion. These results demonstrate that mAMPH's actions on striatal dopamine and glutamate receptors modulate the widespread cortical activation induced by mAMPH. It is hypothesized that dopamine release from nigrostriatal terminals modulates activity within striatal efferent pathways, thereby disinhibiting thalamo-cortical circuits. By extension, these results suggest processes through which repeated exposure to mAMPH might influence cortical function in mAMPH abusers.
SUBMITTER: Gross NB
PROVIDER: S-EPMC2716135 | biostudies-literature | 2009 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA