Unknown

Dataset Information

0

Structure of ceramide-1-phosphate at the air-water solution interface in the absence and presence of Ca2+.


ABSTRACT: Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated by cPLA(2)alpha. However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca(2+) is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA(2)alpha. We report on the structure and morphology of Cer-1-P in monomolecular layers at the air/water solution interface in the absence and presence of Ca(2+) using diverse biophysical techniques, including synchrotron x-ray reflectivity and grazing angle diffraction, to gain insight into the role and function of Cer-1-P in biomembranes. We show that relatively small changes in pH and the presence of monovalent cations dramatically affect the behavior of Cer-1-P. On pure water Cer-1-P forms a solid monolayer despite the negative charge of the phosphomonoester headgroup. In contrast, pH 7.2 buffer yields a considerably less solid-like monolayer, indicating that charge-charge repulsion becomes important at higher pH. Calcium was found to bind strongly to the headgroup of Cer-1-P even in the presence of a 100-fold larger Na(+) concentration. Analysis of the x-ray reflectivity data allowed us to estimate how much Ca(2+) is bound to the headgroup, approximately 0.5 Ca(2+) and approximately 1.0 Ca(2+) ions per Cer-1-P molecule for the water and buffer subphase respectively. These results can be qualitatively understood based on the molecular structure of Cer-1-P and the electrostatic/hydrogen-bond interactions of its phosphomonoester headgroup. Biological implications of our results are also discussed.

SUBMITTER: Kooijman EE 

PROVIDER: S-EPMC2717294 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of ceramide-1-phosphate at the air-water solution interface in the absence and presence of Ca2+.

Kooijman Edgar E EE   Vaknin David D   Bu Wei W   Joshi Leela L   Kang Shin-Woong SW   Gericke Arne A   Mann Elizabeth K EK   Kumar Satyendra S  

Biophysical journal 20090301 6


Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated by cPLA(2)alpha. However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca(2+) is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA(2)alpha. We report on the structure and morphology of Cer-1-P in  ...[more]

Similar Datasets

| S-EPMC2702724 | biostudies-literature
| S-EPMC6050592 | biostudies-literature
| S-EPMC8482758 | biostudies-literature
| S-EPMC3503180 | biostudies-literature
| S-EPMC10197129 | biostudies-literature
| S-EPMC3296044 | biostudies-other
| S-EPMC2532491 | biostudies-literature
| S-EPMC3794946 | biostudies-literature
| S-EPMC5571170 | biostudies-literature
| S-EPMC5703292 | biostudies-literature