Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins.
Ontology highlight
ABSTRACT: The crustacean stomatogastric ganglion (STG) is modulated by numerous neuropeptides that are released locally in the neuropil or that reach the STG as neurohormones. Using 1,5-diaminonaphthalene (DAN) as a reductive screening matrix for matrix-assisted laser desorption/ionization (MALDI) mass spectrometric profiling of disulfide bond-containing C-type allatostatin peptides followed by electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) tandem mass spectrometric (MS/MS) analysis, we identified and sequenced a novel C-type allatostatin peptide (CbAST-C1), pQIRYHQCYFNPISCF-COOH, present in the pericardial organs of the crab, Cancer borealis. Another C-type allatostatin (CbAST-C2), SYWKQCAFNAVSCFamide, was discovered using the expressed sequence tag (EST) database search strategy in both C. borealis and the lobster, Homarus americanus, and further confirmed with de novo sequencing using ESI-Q-TOF tandem MS. Electrophysiological experiments demonstrated that both CbAST-C1 and CbAST-C2 inhibited the frequency of the pyloric rhythm of the STG, in a state-dependent manner. At 10(-6)M, both peptides were only modestly effective when initial frequencies of the pyloric rhythm were >0.8Hz, but almost completely suppressed the pyloric rhythm when applied to preparations with starting frequencies <0.7Hz. Surprisingly, these state-dependent actions are similar to those of the structurally unrelated allatostatin A and allatostatin B families of peptides.
SUBMITTER: Ma M
PROVIDER: S-EPMC2721915 | biostudies-literature | 2009 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA