Unknown

Dataset Information

0

Life history plasticity magnifies the ecological effects of a social wasp invasion.


ABSTRACT: An unresolved question in ecology concerns why the ecological effects of invasions vary in magnitude. Many introduced species fail to interact strongly with the recipient biota, whereas others profoundly disrupt the ecosystems they invade through predation, competition, and other mechanisms. In the context of ecological impacts, research on biological invasions seldom considers phenotypic or microevolutionary changes that occur following introduction. Here, we show how plasticity in key life history traits (colony size and longevity), together with omnivory, magnifies the predatory impacts of an invasive social wasp (Vespula pensylvanica) on a largely endemic arthropod fauna in Hawaii. Using a combination of molecular, experimental, and behavioral approaches, we demonstrate (i) that yellowjackets consume an astonishing diversity of arthropod resources and depress prey populations in invaded Hawaiian ecosystems and (ii) that their impact as predators in this region increases when they shift from small annual colonies to large perennial colonies. Such trait plasticity may influence invasion success and the degree of disruption that invaded ecosystems experience. Moreover, postintroduction phenotypic changes may help invaders to compensate for reductions in adaptive potential resulting from founder events and small population sizes. The dynamic nature of biological invasions necessitates a more quantitative understanding of how postintroduction changes in invader traits affect invasion processes.

SUBMITTER: Wilson EE 

PROVIDER: S-EPMC2722302 | biostudies-literature | 2009 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Life history plasticity magnifies the ecological effects of a social wasp invasion.

Wilson Erin E EE   Mullen Lynne M LM   Holway David A DA  

Proceedings of the National Academy of Sciences of the United States of America 20090722 31


An unresolved question in ecology concerns why the ecological effects of invasions vary in magnitude. Many introduced species fail to interact strongly with the recipient biota, whereas others profoundly disrupt the ecosystems they invade through predation, competition, and other mechanisms. In the context of ecological impacts, research on biological invasions seldom considers phenotypic or microevolutionary changes that occur following introduction. Here, we show how plasticity in key life his  ...[more]

Similar Datasets

| S-EPMC4815461 | biostudies-literature
| S-EPMC5157950 | biostudies-literature
| S-EPMC6342119 | biostudies-literature
| S-EPMC5779642 | biostudies-literature
| S-EPMC3118473 | biostudies-other
| S-EPMC3367720 | biostudies-literature
| S-EPMC5721171 | biostudies-literature
| S-EPMC5864055 | biostudies-literature
2019-08-22 | GSE136124 | GEO
| S-EPMC7331005 | biostudies-literature