Project description:The definitive hosts of Sarcocystis sinensis in water buffaloes have hitherto been unknown, but the close similarity of this species to the cat-transmitted Sarcocystis bovifelis in cattle suggested they were felids. In a previous study, two domestic cats were fed macroscopic sarcocysts of Sarcocystis fusiformis contained within or dissected from the esophageal muscles of water buffaloes, while no microscopic sarcocysts of S. sinensis were noticed. Both cats started shedding small numbers of sporocysts 8-10 days post infection (dpi) and were euthanized 15 dpi. Using a PCR-based molecular assay targeting the mitochondrial cox1 gene of S. fusiformis, both cats were shown to act as definitive hosts for this species. In the present study, DNA samples derived from oocysts/sporocysts in the intestinal mucosa of both cats were further examined by PCR for the presence of S. sinensis using 2 newly designed primers selectively targeting the cox1 gene of this species. All 6 DNA samples examined from each cat tested positive for S. sinensis. A 1,038-bp-long portion of cox1 was amplified and sequenced as 2 overlapping fragments from 5 of these DNA samples. The 5 sequences shared 99.3-100% identity with 7 previous cox1 sequences of S. sinensis obtained from sarcocysts in water buffaloes. Additionally, amplification of the ITS1 region with primers targeting various Sarcocystis spp., yielded amplicons of 2 different lengths, corresponding to those obtained from sarcocyst isolates of S. sinensis and S. fusiformis, respectively. This is the first study to show that cats act as definitive hosts for S. sinensis.
Project description:Echinococcus granulosus sensu lato is a zoonotic agent with a life cycle consisting of definitive hosts (dogs and wild carnivores), and intermediate hosts (usually ungulates). Other animals and humans may accidentally ingest eggs and contract cystic echinococcosis, acting as aberrant hosts. A 3-year-old neutered female cat was brought to a veterinary practice in Sassari (Italy) with abdominal distension. Ultrasound showed multiple intraperitoneal vesicles, which on laparotomy were found to be metacestodes of E. granulosus. Videos of the extraction of cysts are provided. Phylogenetic analysis based on a fragment of the cytochrome oxidase subunit?1 (cox1) mitochondrial gene identified the isolate as E. granulosus sensu stricto genotype G1, the most common genotype circulating in Europe and the Mediterranean basin. This is the first case report of cystic echinococcosis in domestic cats from Italy.
Project description:BackgroundHuman echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search.Methodology and principal findingsThe systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities.Conclusions/significanceResults derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies.
Project description:BackgroundCystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Xiji County of Ningxia Hui Autonomous Region (NHAR) in China where the control campaign based on dog de-worming with praziquantel has been undertaken over preceding decades. This study is to determine the current prevalence of Echinococcus granulosus and E. multilocularis in domestic dogs and monitor the echinococcosis transmission dynamics.MethodsStudy villages were selected using landscape patterns (Geographic Information System, GIS) for Echinococcus transmission "hot spots", combined with hospital records identifying risk areas for AE and CE. A survey of 750 domestic dogs, including copro-sampling and owner questionnaires, from 25 selected villages, was undertaken in 2012. A copro-multiplex PCR assay was used for the specific diagnosis of E. granulosus and E. multilocularis in the dogs. Data analysis, using IBM SPSS Statistics, was undertaken, to compare the prevalence of the two Echinococcus spp. in dogs between four geographical areas of Xiji by the χ2 test. Univariate analysis of the combinations of outcomes from the questionnaire and copro-PCR assay data was carried out to determine the significant risk factors for dog infection.ResultsThe highest de-worming rate of 84.0% was found in the northwest area of Xiji County, and significant differences (P < 0.05) in the de-worming rates among dogs from the four geographical areas of Xiji were detected. The highest prevalence (19.7%, 59/300) of E. multilocularis occurred in northwest Xiji, though the highest prevalence (18.1%, 38/210) of E. granulosus occurred in southwest Xiji. There was no significant difference (P > 0.05) in the prevalence of E. granulosus in dogs from the northwest, southwest, northeast, and southeast of Xiji, but there were significant differences (P < 0.05) between dogs infected with E. multilocularis from the four areas. None of the other independent variables was statistically significant.ConclusionsThe results from this study indicate a high prevalence of both E. granulosus and E. muiltilocularis in dogs in Xiji County, NHAR. Transmission of E. multilocularis was more impacted by geographical risk-factors in Xiji County than that of E. granulosus. Dogs have the potential to maintain the transmission of both species of Echinococcus within local Xiji communities, and the current praziquantel dosing of dogs appears to be ineffective or poorly implemented in this area.
Project description:BackgroundAngiostrongyliasis is a food-borne parasitic zoonosis. Human infection is caused by infection with the third-stage larvae of Angiostrongylus cantonensis. The life cycle of A. cantonensis involves rodents as definitive hosts and molluscs as intermediate hosts. This study aims to investigate on the infection status and characteristics of spatial distribution of these hosts, which are key components in the strategy for the prevention and control of angiostrongyliasis.MethodsThree villages from Nanao Island, Guangdong Province, China, were chosen as study area by stratified random sampling. The density and natural infection of Pomacea canaliculata and various rat species were surveyed every three months from December 2015 to September 2016, with spatial correlations of the positive P. canaliculata and the infection rates analysed by ArcGIS, scan statistics, ordinary least squares (OLS) and geographically weighted regression (GWR) models.ResultsA total of 2192 P. canaliculata specimens were collected from the field, of which 1190 were randomly chosen to be examined for third-stage larvae of A. cantonensis. Seventy-two Angiostrongylus-infected snails were found, which represents a larval infection rate of 6.1% (72/1190). In total, 110 rats including 85 Rattus norvegicus, 10 R. flavipectus, one R. losea and 14 Suncus murinus were captured, and 32 individuals were positive (for adult worms), representing an infection rate of 29.1% of the definitive hosts (32/110). Worms were only found in R. norvegicus and R. flavipectus, representing a prevalence of 36.5% (31/85) and 10% (1/10), respectively in these species, but none in R. losea and S. murinus, despite testing as many as 32 of the latter species. Statistically, spatial correlation and spatial clusters in the spatial distribution of positive P. canaliculata and positive rats existed. Most of the spatial variability of the host infection rates came from spatial autocorrelation. Nine spatial clusters with respect to positive P. canaliculata were identified, but only two correlated to infection rates. The results show that corrected Akaike information criterion, R2, R2 adjusted and σ2 in the GWR model were superior to those in the OLS model.ConclusionsP. canaliculata and rats were widely distributed in Nanao Island and positive infection has also been found in the hosts, demonstrating that there was a risk of angiostrongyliasis in this region of China. The distribution of positive P. canaliculata and rats exhibited spatial correlation, and the GWR model had advantage over the OLS model in the spatial analysis of hosts of A. cantonensis.
Project description:BackgroundCystic echinococcosis (CE) is a zoonotic neglected tropical disease (zNTD) which imposes considerable financial burden to endemic countries. The 2021-2030 World Health Organization's roadmap on NTDs has proposed that intensified control be achieved in hyperendemic areas of 17 countries by 2030. Successful interventions for disease control, and the scale-up of programmes applying such interventions, rely on understanding the associated costs and relative return for investment. We conducted a scoping review of existing peer-reviewed literature on economic evaluations of CE control strategies focused on Echinococcus granulosus zoonotic hosts.Methodology/principal findingsDatabase searches of Scopus, PubMed, Web of Science, CABI Direct and JSTOR were conducted and comprehensively reviewed in March 2022, using predefined search criteria with no date, field or language restrictions. A total of 100 papers were initially identified and assessed for eligibility against strict inclusion and exclusion criteria, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. Bibliography review of included manuscripts was used to identify additional literature. Full review of the final manuscript selection (n = 9) was performed and cost data for control interventions were extracted.Conclusions/significanceThere are very little published data pertaining to the cost and cost effectiveness of CE control interventions targeting its zoonotic hosts. Data given for costs are often incomplete, thus we were unable to perform an economic analysis and cost effectiveness study, highlighting a pressing need for this information. There is much scope for future work in this area. More detailed information and disaggregated costings need to be collected and made available. This would increase the accuracy of any cost-effective analyses to be performed and allow for a greater understanding of the opportunity cost of healthcare decisions and resource allocation by stakeholders and policy makers for effective and cost-effective CE control.
Project description:We previously reported fatal infection of a captive Bornean orangutan with metacestodes of a novel taeniid tapeworm, Versteria sp. New data implicate mustelids as definitive hosts of these tapeworms in North America. At least 2 parasite genetic lineages circulate in North America, representing separate introductions from Eurasia.
Project description:The definitive hosts of Metagonimus hakubaensis are reported to be hamsters, rats, mice, dogs, cats, chickens, and quails in experimental infection and Japanese water shrews in natural infection. Here we report that raccoon dogs are new natural definitive hosts of M. hakubaensis, based on morphological and molecular analyses of Metagonimus flukes collected from the host species from Aomori Prefecture, Japan. Moreover, M. hakubaensis recovered from raccoon dogs showed higher fecundity than those recovered from Japanese water shrews. Therefore, raccoon dogs were considered as a more suitable natural definitive host of M. hakubaensis than Japanese water shrews.
Project description:We detected ferret coronaviruses in 44 (55.7%) of 79 pet ferrets tested in Japan and classified the viruses into 2 genotypes on the basis of genotype-specific PCR. Our results show that 2 ferret coronaviruses that cause feline infectious peritonitis-like disease and epizootic catarrhal enteritis are enzootic among ferrets in Japan.
Project description:Human thelaziasis caused by Thelazia callipaeda is being increasingly reported worldwide. Notably, an epidemic trend is observed in Southwest China. Whether Phortica okadai found in Southwest China can act as a vector of T. callipaeda and human-derived T. callipaeda animal infections has not been widely reported. Here, P. okadai was maintained in a laboratory and experimentally infected with first-stage larvae collected from adult T. callipaeda that were isolated from infected human subjects. Dead P. okadai were subjected to PCR assay and dissected every two days to detect T. callipaeda. Subsequently, live flies were used to infect a rabbit. The infection procedures were performed once a day (20 min) for two weeks. The results show that L1 collected from the adult T. callipaeda could successfully parasitize P. okadai captured in Zunyi, a city in Southwest China, and developed into L3, and a rabbit was successfully infected with T. callipaeda using P. okadai as the intermediate host. The present study demonstrates a human-derived T. callipaeda infection in rabbits, through P. okadai, under laboratory conditions for the first time. These results provide insights into the transmission cycle of T. callipaeda and constitute a foundation to develop an effective treatment protocol for T. callipaeda infection.