Project description:Clostridium difficile is the most common cause of antibiotic-associated diarrhoea worldwide. Over the past 10 years, the incidence and severity of disease have increased in North America and Europe due to the emergence of a hypervirulent clone designated PCR ribotype 027. In this study, we sought to identify phenotypic differences among a collection of 26 presumed PCR ribotype 027 strains from the US and the UK isolated between 1988 and 2008 and also re-evaluated the PCR ribotype. We demonstrated that some of the strains typed as BI by restriction endonuclease analysis, and presumed to be PCR ribotype 027, were in fact other PCR ribotypes such as 176, 198 and 244 due to slight variation in banding pattern compared to the 027 strains. The reassigned 176, 198 and 244 ribotype strains were isolated in the US between 2001 and 2004 and appeared to have evolved recently from the 027 lineage. In addition, the UK strains were more motile and more resistant to most of the antibiotics compared to the US counterparts. We conclude that there should be a heightened awareness of newly identified PCR ribotypes such as 176, 198 and 244, and that they may be as problematic as the notorious 027 strains.
Project description:Recent studies have suggested that exposure to fluoroquinolones represents a risk factor for the development of Clostridium difficile infections and that the acquisition of resistance to the newer fluoroquinolones is the major reason facilitating wide dissemination. In particular, moxifloxacin (MX) and levofloxacin (LE) have been recently associated with outbreaks caused by the C. difficile toxinotype III/PCR ribotype 027/pulsed-field gel electrophoresis type NAP1 strain. In this study, we evaluated the potential of MX and LE in the in vitro development of fluoroquinolone resistance mediated by GyrA and GyrB alterations. Resistant mutants were obtained from five C. difficile parent strains, susceptible to MX, LE, and gatifloxacin (GA) and belonging to different toxinotypes, by selection in the presence of increasing concentrations of MX and LE. Stable mutants showing substitutions in GyrA and/or GyrB were obtained from the parent strains after selection by both antibiotics. Mutants had MICs ranging from 8 to 128 microg/ml for MX, from 8 to 256 microg/ml for LE, and from 1.5 to > or = 32 microg/ml for GA. The frequency of mutation ranged from 3.8 x 10(-6) to 6.6 x 10(-5) for MX and from 1.0 x 10(-6) to 2.4 x 10(-5) for LE. In total, six different substitutions in GyrA and five in GyrB were observed in this study. The majority of these substitutions has already been described for clinical isolates or has occurred at positions known to be involved in fluoroquinolone resistance. In particular, the substitution Thr82 to Ile in GyrA, the most common found in resistant C. difficile clinical isolates, was observed after selection with LE, whereas the substitution Asp426 to Val in GyrB, recently described in toxin A-negative/toxin B-positive epidemic strains, was observed after selection with MX. Interestingly, a reduced susceptibility to fluoroquinolones was observed in colonies isolated after the first and second steps of selection by both MX and LE, with no substitution in GyrA or GyrB. The results suggest a relevant role of fluoroquinolones in the emergence and selection of fluoroquinolone-resistant C. difficile strains also in vivo.
Project description:AimTo investigate the resistance of Helicobacter pylori (H. pylori) to ciprofloxacin (CIP), levofloxacin (LVX) and moxifloxacin (MOX) in the Beijing area and to elucidate the resistance mechanisms.MethodsSeventy-nine H. pylori clinical strains, isolated from patients who had undergone upper gastrointestinal endoscopy in Peking University First Hospital from 2007 to 2009, were tested for their susceptibility to CIP, LVX and MOX using the E-test method. H. pylori strain 26695 was included in the susceptibility testing as a control strain. According to the minimal inhibitory concentration (MIC) values, a strain was classified as resistant to CIP, LVX or MOX when the MIC was > 1 microg/mL. We amplified by polymerase chain reaction (PCR) and sequenced the quinolone resistance-determining regions of the gyrA and gyrB genes from 29 quinolone-resistant and 16 quinolone-susceptible H. pylori strains selected at random.ResultsIn this study, the resistance rates of H. pylori to CIP, LVX or MOX were 55.7% (44/79), and the primary resistance rates were 26.6% (21/79). Patients with secondary resistance had received LVX in previous eradication treatments, but not MOX or CIP. Forty-five strains, including 29 CIP, LVX or MOX-resistant strains (MIC: 1.5-32 microg/mL) and 16 susceptible strains, were selected randomly from the 79 strains and used in PCR analysis. Among these 45 strains, 27 resistant strains had mutations in the gyrA gene, including 11 strains with mutations corresponding to Asp-91 (MIC: 2-32 microg/mL), one of which also had a mutation corresponding to Val-150, and 16 strains had mutations at Asn-87 (MIC: 4-32 microg/mL), three of which also had mutations corresponding to Arg-140 or Val-150. In addition, Arg-140, Val-150 or Ala-97 mutations were separately detected in three susceptible strains. Analysis of the gyrB gene showed that one strain of low resistance had a mutation corresponding to Ser-457 that coexisted with an Asp-91 mutation. There was a significant difference in the occurrence of mutations in the gyrA gene between CIP, LVX and MOX-resistant and -susceptible strains (P < 0.05), but 2 resistant strains were found to possess no quinolone resistance-determining region mutations.ConclusionResistance is primarily mediated through point mutations in gyrA. Whether other mechanisms are responsible for resistance in strains without mutations in the QRDR should be detected.
Project description:Previously, we demonstrated that the recently evolved PCR-ribotype 027 hypervirulent Clostridium difficile strain (R20291) has acquired five genetic regions compared to the historic 027 counterpart strain (CD196), that may in part explain phenotypic traits relating to survival, antimicrobial resistance and virulence. Closer scrutiny of the three genome sequences reveals that, in addition to gene gain/loss, point mutations and inversions appear to have accumulated. Inversions are located upstream of potential coding sequences and could affect expression of these. C. difficile has a highly fluid genome with multiple mechanisms to modify its genetic content and is continuing to evolve in our hospitals influenced by environmental changes and human activity.
Project description:BACKGROUND:Phenotypic fluoroquinolone resistance was first reported in Western Kenya in 2009 and later in Coastal Kenya and Nairobi. Until recently gonococcal fluoroquinolone resistance mechanisms in Kenya had not been elucidated. The aim of this paper is to analyze mutations in both gyrA and parC responsible for elevated fluoroquinolone Minimum Inhibitory Concentrations (MICs) in Neisseria gonorrhoeae (GC) isolated from heterosexual individuals from different locations in Kenya between 2013 and 2017. METHODS:Antimicrobial Susceptibility Tests were done on 84 GC in an ongoing Sexually Transmitted Infections (STI) surveillance program. Of the 84 isolates, 22 resistant to two or more classes of antimicrobials were chosen for analysis. Antimicrobial susceptibility tests were done using E-test (BioMerieux) and the results were interpreted with reference to European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards. The isolates were sub-cultured, and whole genomes were sequenced using Illumina platform. Reads were assembled de novo using Velvet, and mutations in the GC Quinolone Resistant Determining Regions identified using Bioedit sequence alignment editor. Single Nucleotide Polymorphism based phylogeny was inferred using RaxML. RESULTS:Double GyrA amino acid substitutions; S91F and D95G/D95A were identified in 20 isolates. Of these 20 isolates, 14 had an additional E91G ParC substitution and significantly higher ciprofloxacin MICs (p?=?0.0044*). On the contrary, norfloxacin MICs of isolates expressing both GyrA and ParC QRDR amino acid changes were not significantly high (p?=?0.82) compared to MICs of isolates expressing GyrA substitutions alone. No single GyrA substitution was found in the analyzed isolates, and no isolate contained a ParC substitution without the simultaneous presence of double GyrA substitutions. Maximum likelihood tree clustered the 22 isolates into 6 distinct clades. CONCLUSION:Simultaneous presence of amino acid substitutions in ParC and GyrA has been reported to increase gonococcal fluoroquinolone resistance from different regions in the world. Our findings indicate that GyrA S91F, D95G/D95A and ParC E91G amino acid substitutions mediate high fluoroquinolone resistance in the analyzed Kenyan GC.
Project description:In order to correlate the mutations inside the entiregyrAandgyrBgenes with the level of resistance to ofloxacin (OFX) and moxifloxacin (MFX) in isolates of multidrug-resistantMycobacterium tuberculosis(MDR-TB), a total of 111 isolates were categorized into OFX-susceptible (MIC, ?2 ?g/ml) and low-level (MIC, 4 to 8 ?g/ml) and high-level (MIC, ?16 ?g/ml) OFX-resistant isolates and MFX-susceptible (MIC, ?0.5 ?g/ml) and low-level (MIC, 1 to 2 ?g/ml) and high-level (MIC, ?4 ?g/ml) MFX-resistant isolates. Resistance-associated mutations inside thegyrAgene were found in 30.2% of OFX-susceptible and 72.5% and 72.2% of low-level and high-level OFX-resistant isolates and in 28.6% of MFX-susceptible and 58.1% and 83.9% of low-level and high-level MFX-resistant isolates. Compared with OFX-susceptible isolates, low-level and high-level OFX-resistant isolates had a significantly higher prevalence of mutations atgyrAcodons 88 to 94 (17.0%, 65.0%, and 72.2%, respectively;P< 0.001) and a higher prevalence of thegyrBG512R mutation (0.0%, 2.5%, and 16.7%, respectively;P= 0.006). Similarly, compared with MFX-susceptible isolates, low-level and high-level MFX-resistant isolates had a significantly higher prevalence of mutations atgyrAcodons 88 to 94 (14.3%, 51.6%, and 80.6%, respectively;P< 0.001) as well as a higher prevalence of thegyrBG512R mutation (0.0%, 0.0%, and 12.9%, respectively;P= 0.011). D94G and D94N mutations ingyrAand the G512R mutation ingyrBwere correlated with high-level MFX resistance, while the D94A mutation was associated with low-level MFX resistance. The prevalence of mutations atgyrAcodons 88 to 94 and thegyrBG512R mutation were higher among fluoroquinolone (FQ)-susceptible East Asian (Beijing) and Indo-Oceanic strains than they were among Euro-American strains, implying that molecular techniques to detect FQ resistance may be less specific in areas with a high prevalence of East Asian (Beijing) and Indo-Oceanic strains.
Project description:Clostridium difficile is the etiological agent of antibiotic-associated colitis and the most common cause of hospital-acquired infectious diarrhea. Fluoroquinolones such as ciprofloxacin are associated with lower risks of C. difficile-associated diarrhea. In this study, we have analyzed 72 C. difficile isolates obtained from patients with different clinical courses of disease, such as toxic megacolon and relapses; the hospital environment; public places; and horses. They were investigated for their susceptibilities to moxifloxacin (MXF), metronidazole (MEO), and vancomycin (VAN). Mutants highly resistant to fluoroquinolones were selected in vitro by stepwise exposure to increasing concentrations of MXF. The resulting mutants were analyzed for the presence of mutations in the quinolone resistance-determining regions of DNA gyrase (gyrA), the production of toxins A and B, and the epidemiological relationship of these isolates. These factors were also investigated using PCR-based methods. All strains tested were susceptible to MEO and VAN. Twenty-six percent of the clinical isolates (19 of 72) were highly resistant to MXF (MIC > or = 16 microg/ml). Fourteen of these 19 strains contained nucleotide changes resulting in amino acid substitutions at position 83 in the gyrA protein. Resistant strains selected in vitro did not contain mutations at that position. These findings indicate that resistance to MXF in a majority of cases may be due to amino acid substitution in the gyrA gene.
Project description:BACKGROUND:The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. METHODOLOGY/PRINCIPAL FINDINGS:We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. CONCLUSION/SIGNIFICANCE:A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile myoviruses present within bacterial genomes.
Project description:BackgroundClostridium difficile infection (CDI) is an emerging healthcare problem in the world. The purpose of this study was to perform a systematic epidemiological research of CDI in Tongji hospital, the central of China.MethodsStool samples from hospitalized adults suspected of CDI were enrolled. The diagnosis of CDI were based on the combination of clinical symptoms and laboratory results. Clinical features of CDI and non-CDI patients were compared by appropriate statistical tests to determine the risk factors of CDI. Multilocus sequence typing (MLST) was employed for molecular epidemiological analysis. Susceptibility testing and relevant antimicrobial agent resistance genes were performed as well.ResultsFrom June 2016 to September 2017, 839 hospitalized adults were enrolled. Among them, 107 (12.8%, 107/839) patients were C. difficile culture positive, and 73 (8.7%, 73/839) were infected with toxigenic C. difficile (TCD), with tcdA + tcdB+ strains accounting for 90.4% (66/73) and tcdA-tcdB+ for 9.6% (7/73). Meanwhile, two TCD strains were binary toxin positive and one of them was finally identified as CD027. Severe symptoms were observed in these two cases. Multivariate analysis indicated antibiotic exposure (p = 0.001, OR = 5.035) and kidney disease (p = 0.015, OR = 8.329) significantly increased the risk of CDI. Phylogenetic tree analysis demonstrated 21 different STs, including one new ST (ST467); and the most dominant type was ST54 (35.6%, 26/73). Multidrug-resistant (MDR) TCD were 53.4% (39/73); resistance to ciprofloxacin, erythromycin, and clindamycin were > 50%. Other antibiotics showed relative efficiency and all strains were susceptible to metronidazole and vancomycin. All moxifloxacin-resistant isolates carried a mutation in GyrA (Thr82 → Ile), with one both having mutation in GyrB (Ser366 → Ala).ConclusionsKnowledge of epidemiological information for CDI is limited in China. Our finding indicated tcdA + tcdB+ C. difficile strains were the dominant for CDI in our hospital. Significant risk factors for CDI in our setting appeared to be antibiotic exposure and kidney disease. Metronidazole and vancomycin were still effective for CDI. Although no outbreak was observed, the first isolation of CD027 in center China implied the potential spread of this hypervirulent clone. Further studies are needed to enhance our understanding of the epidemiology of CDI in China.