ABSTRACT: Archived formalin-fixed, paraffin-embedded human tumors are widely available and represent a unique source of morphologically defined material. Formalin-fixed, paraffin-embedded tissue is known to contain a wealth of molecular information in the form of microRNAs (miRNAs), which could be correlated with clinical outcome for improved prognostication and/or treatment response. miRNAs are endogenous, noncoding RNAs ( approximately 22 nucleotides) and may function as tumor suppressors or oncogenes. A reliable, robust methodology is needed to take full advantage of archived human cancers, especially for those where fresh-frozen tumor banks are unavailable, for example, malignant melanoma. To this end, we applied a simple-to-use protocol for extracting total RNA from various formalin-fixed, paraffin-embedded specimens (colon, liver, prostate, thyroid, uterus, and skin), optimized for small RNA recovery. Using a "poison primer" strategy (ie, primer silencing), we blocked the amplification of ribosomal RNA, enabling the successful sequencing of 17 novel and 53 known miRNAs (including small RNAs) from 10-year-old archived normal skin, cutaneous scalp melanoma, and sentinel lymph nodes (both negative and positive for metastasis) excised from a 52-year-old man. The cloning incidence provided an estimation of the level of specific miRNA expression, which was confirmed by Northern analysis and quantitative real-time polymerase chain reaction. This methodology can therefore be used to facilitate miRNA discovery from archived human cancers.