PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells.
Ontology highlight
ABSTRACT: Regulatory CD4(+)CD25(Hi) T cells (Treg) and programmed death-1 (PD-1) molecule have emerged as pivotal players in immune regulation. However, the underlying mechanisms by which they impact antigen-specific CD8(+) immune responses in cancer patients and how they interact with each other under physiologic conditions remain unclear. Herein, we examined the relationship of PD-1 and its abrogation to the function of Treg in patients with melanoma using short-term in vitro assays to generate melanoma-specific T cells. We identified Treg in the circulation of vaccinated melanoma patients and detected PD-1 expression on vaccine-induced melanoma antigen-specific CTLs, as well as on and within Treg from patients' peripheral blood. Programmed death ligand (PD-L) 1 expression was also detected on patients' Treg. PD-1 blockade promoted the generation of melanoma antigen-specific CTLs and masked their inhibition by Treg. The mechanisms by which PD-1 blockade mediated immune enhancement included direct augmentation of melanoma antigen-specific CTL proliferation, heightening their resistance to inhibition by Treg and direct limitation of the inhibitory ability of Treg. PD-1 blockade reversed the increased expression of PD-1 and PD-L1 on melanoma antigen-specific CTL by Treg, rescued INF-gamma and IL-2 or INF-gamma and tumor necrosis factor-alpha co-expression and expression of IL-7 receptor by melanoma antigen-specific CTL which were diminished by Treg. PD-1 blockade also resulted in down-regulation of intracellular FoxP3 expression by Treg. These data suggest that PD-1 is importantly implicated in the regulation of Treg function in melanoma patients.
SUBMITTER: Wang W
PROVIDER: S-EPMC2731790 | biostudies-literature | 2009 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA