Unknown

Dataset Information

0

Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke.


ABSTRACT: Stroke increases neuroblasts in the subventricular zone (SVZ) of the lateral ventricle and these neuroblasts migrate toward the ischemic boundary to replace damaged neurons. Using brain slices from the nonischemic adult rat and transgenic mice that expressed enhanced green fluorescent protein (EGFP) concomitantly with doublecortin (DCX), a marker for migrating neuroblasts, we recorded electrophysiological characteristics while simultaneously analyzing the gene expression in single SVZ cells. We found that SVZ cells expressing the DCX gene from the nonischemic rat had a mean resting membrane potential (RMP) of -30 mV. DCX-EGFP-positive cells in the nonischemic SVZ of the transgenic mouse had a mean RMP of -25+/-7 mV and did not exhibit Na(+) currents, characteristic of immature neurons. However, DCX-EGFP-positive cells in the ischemic SVZ exhibited a hyperpolarized mean RMP of -54+/-18 mV and displayed Na(+) currents, indicative of more mature neurons. Single-cell multiplex RT-PCR analysis revealed that DCX-EGFP-positive cells in the nonischemic SVZ of the transgenic mouse expressed high neural progenitor marker genes, Sox2 and nestin, but not mature neuronal marker genes. In contrast, DCX-EGFP-positive cells in the ischemic SVZ expressed tyrosine hydroxylase, a mature neuronal marker gene. Together, these data indicate that stroke changes gene profiles and the electrophysiology of migrating neuroblasts.

SUBMITTER: Liu XS 

PROVIDER: S-EPMC2735250 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke.

Liu Xian Shuang XS   Chopp Michael M   Zhang Xue Guo XG   Zhang Rui Lan RL   Buller Ben B   Hozeska-Solgot Ann A   Gregg Sara R SR   Zhang Zheng Gang ZG  

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 20081015 2


Stroke increases neuroblasts in the subventricular zone (SVZ) of the lateral ventricle and these neuroblasts migrate toward the ischemic boundary to replace damaged neurons. Using brain slices from the nonischemic adult rat and transgenic mice that expressed enhanced green fluorescent protein (EGFP) concomitantly with doublecortin (DCX), a marker for migrating neuroblasts, we recorded electrophysiological characteristics while simultaneously analyzing the gene expression in single SVZ cells. We  ...[more]

Similar Datasets

| S-EPMC8256153 | biostudies-literature
| S-EPMC4450175 | biostudies-literature
| S-EPMC3689426 | biostudies-literature
| S-EPMC4843790 | biostudies-literature
| S-EPMC2867852 | biostudies-literature
2024-09-02 | GSE275939 | GEO
| S-EPMC1380263 | biostudies-literature
| S-EPMC9720143 | biostudies-literature
| S-EPMC8413197 | biostudies-literature
| S-EPMC8975773 | biostudies-literature