Unknown

Dataset Information

0

Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures.


ABSTRACT: BACKGROUND:Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species (ROS) modify cellular targets to induce the death of neurons remains unknown. The goal of this study was to determine if oxidative inactivation of mitochondrial aconitase (m-aconitase) resulted in the release of redox-active iron (Fe2+) and hydrogen peroxide (H2O2) and whether this contributes to cell death. METHODOLOGY/PRINCIPAL FINDINGS:Incubation of rat primary mesencephalic cultures with the redox cycling herbicide paraquat (PQ2+) resulted in increased production of H2O2 and Fe2+ at times preceding cell death. To confirm the role of m-aconitase as a source of Fenton reagents and death, we overexpressed m-aconitase using an adenoviral construct thereby increasing the target available for inactivation by ROS. Co-labeling studies identified astrocytes as the predominant cell type expressing transduced m-aconitase although neurons were identified as the primary cell type dying. Oxidative inactivation of m-aconitase overexpressing cultures resulted in exacerbation of H2O2 production, Fe2+ accumulation and increased neuronal death. Increased cell death in m-aconitase overexpressing cultures was attenuated by addition of catalase and/or a cell permeable iron chelator suggesting that neuronal death occurred in part via astrocyte-derived H2O2. CONCLUSIONS:These results suggest a role of ROS-sensitive m-aconitase as a source of Fe2+ and H2O2 and as a contributing factor to neurotoxicity.

SUBMITTER: Cantu D 

PROVIDER: S-EPMC2738973 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures.

Cantu David D   Schaack Jerome J   Patel Manisha M  

PloS one 20090918 9


<h4>Background</h4>Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species (ROS) modify cellular targets to induce the death of neurons remains unknown. The goal of this study was to determine if oxidative inactivation of mitochondrial aconitase (m-aconitase) resulted in the release of redox-active iron (Fe2+) and hydrogen peroxide (H2O2) and whether this contributes t  ...[more]

Similar Datasets

| S-EPMC1166334 | biostudies-other
| S-EPMC3636082 | biostudies-literature
| S-EPMC9854573 | biostudies-literature
| S-EPMC2653451 | biostudies-literature
| S-EPMC10906989 | biostudies-literature
| S-EPMC5066840 | biostudies-literature
| S-EPMC1151053 | biostudies-other
2015-09-24 | E-GEOD-72321 | biostudies-arrayexpress
2015-09-24 | GSE72321 | GEO
2018-01-01 | GSE94818 | GEO