Reproducing basic pKa values for turkey ovomucoid third domain using a polarizable force field.
Ontology highlight
ABSTRACT: We have extended our previous studies of calculating acidity constants for the acidic residues found in the turkey ovomucoid third domain protein (OMTKY3) by determining the relative pKa values for the basic residues (Lys13, Arg21, Lys29, Lys34, His52, and Lys55). A polarizable force field (PFF) was employed. The values of the pKa were found by direct comparison of energies of solvated protonated and deprotonated forms of the protein. Poisson-Boltzmann (PBF) and surface generalized Born (SGB) continuum solvation models represent the hydration, and a nonpolarizable fixed-charge OPLS-AA force field was used for comparison. Our results indicate that (i) the pKa values of the basic residues can be found in close agreement with the experimental values when a PFF is used in conjunction with the PBF solvation model, (ii) it is sufficient to take into the account only the residues which are in close proximity (hydrogen bonded) to the residue in question, and (iii) the PBF solvation model is superior to the SGB solvation model for these pKa calculations. The average error with the PBF/PFF model is only 0.7 pH unit, compared with 2.2 and 6.1 units for the PBF/OPLS and SGB/OPLS, respectively. The maximum deviation of the PBF/PFF results from the experimental values is 1.7 pH units compared with 6.0 pH units for the PBF/OPLS. Moreover, the best results were obtained while using an advanced nonpolar energy calculation scheme. The overall conclusion is that this methodology and force field are suitable for the accurate assessment of pKa shifts for both acidic and basic protein residues.
SUBMITTER: Click TH
PROVIDER: S-EPMC2739454 | biostudies-literature | 2009 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA