Project description:The human T-lymphotropic virus 1 (HTLV-1) and 2 (HTLV-2) can be transmitted between humans by mechanisms associated with horizontal and vertical routes. Recently, high prevalence rates and levels of genetic diversity for HTLV-1 and HTLV-2 were detected among people who use illicit drugs (PWUDs) in the Brazilian state of Pará. None of the PWUDs with HTLV-1 or HTLV-2 were aware of their carrier condition of the retrovirus, and they ability to spread it to their family group, sexual partners, and other contacts. Thus, this study evaluated the presence of HTLV-1 and HTLV-2 in families of PWUDs in the state of Pará, in Northern Brazil. This descriptive study used convenience sampling and accessed 37 PWUDs and their respective families (n = 97) in 18 municipalities in the state of Pará, northern Brazil. All participants provided personal data and were tested for the presence of HTLV-1 and HTLV-2 using enzyme-linked immunosorbent assay and western blotting. HTLV positive samples were selected for Nested-PCR, and viral genotyping by nucleotide sequencing and phylogenetic analysis. HTLV-1 or HTLV-2 infections were detected in 15 families of PWUDs: 27 family members of PWUDs were infected with HTLV-1 (27.8%) and another 20 of them with HTLV-2 (20.6%). Subtypes 1a [subgroup A (54.5%)], 2b (20.5%), and 2c (25.0%) were detected. High horizontal (76.9%) and vertical (61.4%) transmission rates of HTLV were ascertained. Factors that facilitate the acquisition and transmission of HTLV-1 and HTLV-2 were reported by the participants, such as long-term relationships, unprotected sex, breastfeeding, and lack of knowledge about the condition of being a carrier of the retrovirus. Evidence indicates intrafamilial transmission of HTLV from PWUDs to members of their respective families. Key interventions should urgently be employed for the control and prevention of HTLV-1 and HTLV-2 to reduce the spread of this retrovirus in PWUDs and the general population in Northern Brazil and elsewhere.
Project description:BackgroundIn December 2013, an outbreak of Chikungunya virus (CHIKV) caused by the Asian genotype was notified in the Caribbean. The outbreak has since spread to 38 regions in the Americas. By September 2014, the first autochthonous CHIKV infections were confirmed in Oiapoque, North Brazil, and in Feira de Santana, Northeast Brazil.MethodsWe compiled epidemiological and clinical data on suspected CHIKV cases in Brazil and polymerase-chain-reaction-based diagnostic was conducted on 68 serum samples from patients with symptom onset between April and September 2014. Two imported and four autochthonous cases were selected for virus propagation, RNA isolation, full-length genome sequencing, and phylogenetic analysis. We then followed CDC/PAHO guidelines to estimate the risk of establishment of CHIKV in Brazilian municipalities.ResultsWe detected 41 CHIKV importations and 27 autochthonous cases in Brazil. Epidemiological and phylogenetic analyses indicated local transmission of the Asian CHIKV genotype in Oiapoque. Unexpectedly, we also discovered that the ECSA genotype is circulating in Feira de Santana. The presumed index case of the ECSA genotype was an individual who had recently returned from Angola and developed symptoms in Feira de Santana. We estimate that, if CHIKV becomes established in Brazil, transmission could occur in 94% of municipalities in the country and provide maps of the risk of importation of each strain of CHIKV in Brazil.ConclusionsThe etiological strains associated with the early-phase CHIKV outbreaks in Brazil belong to the Asian and ECSA genotypes. Continued surveillance and vector mitigation strategies are needed to reduce the future public health impact of CHIKV in the Americas.
Project description:The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.
Project description:Rabies spreads in both Arctic (Vulpes lagopus) and red foxes (Vulpes vulpes) throughout the Canadian Arctic but limited wildlife disease surveillance, due to the extensive landmass of the Canadian north and its small widely scattered human population, undermines our knowledge of disease transmission patterns. This study has explored genetic population structure in both the rabies virus and its fox hosts to better understand factors that impact rabies spread. Phylogenetic analysis of 278 samples of the Arctic lineage of rabies virus recovered over 40 years identified four sub-lineages, A1 to A4. The A1 lineage has been restricted to southern regions of the Canadian province of Ontario. The A2 lineage, which predominates in Siberia, has also spread to northern Alaska while the A4 lineage was recovered from southern Alaska only. The A3 sub-lineage, which was also found in northern Alaska, has been responsible for virtually all cases across northern Canada and Greenland, where it further differentiated into 18 groups which have systematically evolved from a common predecessor since 1975. In areas of Arctic and red fox sympatry, viral groups appear to circulate in both hosts, but both mitochondrial DNA control region sequences and 9-locus microsatellite genotypes revealed contrasting phylogeographic patterns for the two fox species. Among 157 Arctic foxes, 33 mitochondrial control region haplotypes were identified but little genetic structure differentiating localities was detected. Among 162 red foxes, 18 control region haplotypes delineated three groups which discriminated among the Churchill region of Manitoba, northern Quebec and Labrador populations, and the coastal Labrador locality of Cartwright. Microsatellite analyses demonstrated some genetic heterogeneity among sampling localities of Arctic foxes but no obvious pattern, while two or three clusters of red foxes suggested some admixture between the Churchill and Quebec-Labrador regions but uniqueness of the Cartwright group. The limited population structure of Arctic foxes is consistent with the rapid spread of rabies virus subtypes throughout the north, while red fox population substructure suggests that disease spread in this host moves most readily down certain independent corridors such as the northeastern coast of Canada and the central interior. Interestingly the evidence suggests that these red fox populations have limited capacity to maintain the virus over the long term, but they may contribute to viral persistence in areas of red and Arctic fox sympatry.
Project description:We investigated an outbreak of exanthematous illness in Maceió by using molecular surveillance; 76% of samples tested positive for chikungunya virus. Genetic analysis of 23 newly generated genomes identified the East/Central/South African genotype, suggesting that this lineage has persisted since mid-2014 in Brazil and may spread in the Americas and beyond.
Project description:BackgroundThe 2017-2018 yellow fever virus (YFV) outbreak in southeastern Brazil marked a reemergence of YFV in urban states that had been YFV-free for nearly a century. Unlike earlier urban YFV transmission, this epidemic was driven by forest mosquitoes. The objective of this study was to evaluate environmental drivers of this outbreak.Methodology/principal findingsUsing surveillance data from the Brazilian Ministry of Health on human and non-human primate (NHP) cases of YFV, we traced the spatiotemporal progression of the outbreak. We then assessed the epidemic timing in relation to drought using a monthly Standardized Precipitation Evapotranspiration Index (SPEI) and evaluated demographic risk factors for rural or outdoor exposure amongst YFV cases. Finally, we developed a mechanistic framework to map the relationship between drought and YFV. Both human and NHP cases were first identified in a hot, dry, rural area in northern Minas Gerais before spreading southeast into the more cool, wet urban states. Outbreaks coincided with drought in all four southeastern states of Brazil and an extreme drought in Minas Gerais. Confirmed YFV cases had an increased odds of being male (OR 2.6; 95% CI 2.2-3.0), working age (OR: 1.8; 95% CI: 1.5-2.1), and reporting any recent travel (OR: 2.8; 95% CI: 2.3-3.3). Based on this data as well as mosquito and non-human primate biology, we created the "Mono-DrY" mechanistic framework showing how an unusual drought in this region could have amplified YFV transmission at the rural-urban interface and sparked the spread of this epidemic.Conclusions/significanceThe 2017-2018 YFV epidemic in Brazil originated in hot, dry rural areas of Minas Gerais before expanding south into urban centers. An unusually severe drought in this region may have created environmental pressures that sparked the reemergence of YFV in Brazil's southeastern cities.
Project description:Purpose: In carcinogenesis, the stomach, the MYC gene is frequently amplified and its protein is overexpressed, which contributes to uncontrolled cell proliferation mucosal gástrica.Três cell lines were subjected to sequencing semiconductor Proton Ion before and after the silencing of MYC. These lines were originating from diffuse and intestinal histologic types and the third of a metastasis from a stomach tumor originating in a ascites. Methods: mRNA profiles were generated from three established lines of CG previously characterized by our group. AGP01 (Obtained from ascitic fluid of an intestinal-type GC), ACP02 (diffuse-type GC) and ACP03 (intestinal-type GC). The three cell lines present chromosome 8 trisomy and MYC amplification, reflecting the genetic characteristics found in gastric cancer samples from Northern Brazil. They were generated by sequencing depth in triplicate using the Sequencer ™ Ion Proton. Raw data reads Obtained by primary sequencing Were Submitted to quality control in order to calculate alignment and to assess how the reads behave When Compared to the reference human genome (Hg19 / GRCh37). The aligned reads Were mapped and quantified using TMAP. Gene expression levels Were quantified using Sailfish pack software and the RPKM (Reads Per kilobase per Million mapped reads) method was used to estimate Then expression levels gene. Results: Using analysis of an optimized workflow, we mapped more than 13 million readings sequences between our samples from the human genome. Were mapped a total of 917 up-regulated genes and 1,566 different genes down-regulated Were When comparing the expression of AGP01 non-targeting control (1C) versus AGP01 MYC-silenced (1M), with a total of 2,483 DEGS. The evaluation of ACP02 cells treated with non-targeting control (2C) versus ACP02 MYC-silenced (2M) Showed a total of 5,327 DEGS, with 1,299 up-regulated and 4,098 down-regulated genes. The total of 4,117 were found DEGS When comparing ACP03 control cells (3C) with ACP03 MYC-silenced cells, with 3,274 up-regulated and 843 down-regulated genes. Silencing of the MYC gene, allowed the detection of more than 1,000 DEGS (Differentially Expressed Genes) between the three strains that were considered significant if the False Discovery Rate (FDR) was ≤0.001, P-value <0.05, and the absolute value of the Fold change (FC) was ≥1. The analysis of DEGS showed 22% and 34% were detected with a profile down-regulated in intestinal and diffuse type, respectively. The up-regulated profile was higher in the intestinal type, with 77% of DEGS than the diffuse type with 13% DEGS. Furthermore, the lineage from metastasis showed 33% of DEGS up-regulated and 66% of DEGS down-regulated. Conclusions: Our study is the first to describe bioinformatics methods the effect before and after the silencing of the MYC gene in cell lines of gastric cancer northern people of Brazil. Our results showed that depending on the histological type there are many functional genes between the three strains that were recorded significantly associated with pathways enriched for cancer, metabolism, adhesion, cell cycle, proteolysis and signaling, suggesting the existence of routes of different carcinogenesis that lead normal mucosa to turn into gastric cancer.
Project description:Dengue virus and its four serotypes (DENV-1 to DENV-4) infect 390 million people and are implicated in at least 25,000 deaths annually, with the largest disease burden in tropical and subtropical regions. We investigated the spatial dynamics of DENV-1, DENV-2 and DENV-3 in Brazil by applying a statistical framework to complete genome sequences. For all three serotypes, we estimated that the introduction of new lineages occurred within 7 to 10-year intervals. New lineages were most likely to be imported from the Caribbean region to the North and Northeast regions of Brazil, and then to disperse at a rate of approximately 0.5 km/day. Joint statistical analysis of evolutionary, epidemiological and ecological data indicates that aerial transportation of humans and/or vector mosquitoes, rather than Aedes aegypti infestation rates or geographical distances, determine dengue virus spread in Brazil.
Project description:Oropouche fever has reemerged in Parauapebas and Porto de Moz municipalities, Pará State, Brazil. Serologic analysis (immunoglobulin M-ELISA) and virus isolation confirmed Oropouche virus (OROV) in both municipalities. Nucleotide sequencing of 2 OROV isolates from each location indicated genotypes I (Parauapebas) and II (Porto de Moz) in Brazil.
Project description:A surveillance of Culicoides biting midges with light suction traps was conducted in the northern region of Honshu, main island of Japan, during the summers and autumns of 2009 and 2010. A total of 106 trap collections across 37 cattle farms were investigated for the structure and distribution of Culicoides species. Forty-thousand and one hundred forty-nine specimens of Culicoides biting midges were identified at the species level, and ?19 species were included in the specimens. Culicoides oxystoma, which is a known major vector of Akabane virus (AKAV), appeared not to have expanded in northern Honshu during the surveillance. Of the potential AKAV vectors suggested by a previous laboratory experiment, C. tainanus and C. punctatus widely infested cowsheds across northern Honshu. The AKAV circulation was confirmed by serological surveillance of sentinel cattle in northern Honshu during the summer and autumn of 2010 and, consequently, >200 calves affected by the virus were identified as of spring 2011. Our surveillance demonstrated that C. tainanus and C. punctatus were widely spread and often dominated at cattle farms in/around the seroconverted regions, and our results thus suggest that these species played a critical role in the AKAV transmission in 2010. Because the distribution ranges of C. tainanus and C. punctatus cover almost all of mainland Japan, a potential risk of AKAV transmission might be expected even in areas outside the range of C. oxystoma.