Unknown

Dataset Information

0

In situ measurement of transport between subchondral bone and articular cartilage.


ABSTRACT: Subchondral bone and articular cartilage play complementary roles in load bearing of the joints. Although the biomechanical coupling between subchondral bone and articular cartilage is well established, it remains unclear whether direct biochemical communication exists between them. Previously, the calcified cartilage between these two compartments was generally believed to be impermeable to transport of solutes and gases. However, recent studies found that small molecules could penetrate into the calcified cartilage from the subchondral bone. To quantify the real-time solute transport across the calcified cartilage, we developed a novel imaging method based on fluorescence loss induced by photobleaching (FLIP). Diffusivity of sodium fluorescein (376 Da) was quantified to be 0.07 +/- 0.03 and 0.26 +/- 0.22 microm(2)/s between subchondral bone and calcified cartilage and within the calcified cartilage in the murine distal femur, respectively. Electron microscopy revealed that calcified cartilage matrix contained nonmineralized regions (approximately 22% volume fraction) that are either large patches (53 +/- 18 nm) among the mineral deposits or numerous small regions (4.5 +/- 0.8 nm) within the mineral deposits, which may serve as transport pathways. These results suggest that there exists a possible direct signaling between subchondral bone and articular cartilage, and they form a functional unit with both mechanical and biochemical interactions, which may play a role in the maintenance and degeneration of the joint.

SUBMITTER: Pan J 

PROVIDER: S-EPMC2748158 | biostudies-literature | 2009 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

In situ measurement of transport between subchondral bone and articular cartilage.

Pan Jun J   Zhou Xiaozhou X   Li Wen W   Novotny John E JE   Doty Stephen B SB   Wang Liyun L  

Journal of orthopaedic research : official publication of the Orthopaedic Research Society 20091001 10


Subchondral bone and articular cartilage play complementary roles in load bearing of the joints. Although the biomechanical coupling between subchondral bone and articular cartilage is well established, it remains unclear whether direct biochemical communication exists between them. Previously, the calcified cartilage between these two compartments was generally believed to be impermeable to transport of solutes and gases. However, recent studies found that small molecules could penetrate into t  ...[more]

Similar Datasets

| S-EPMC8804871 | biostudies-literature
| S-EPMC9792876 | biostudies-literature
| S-EPMC9731868 | biostudies-literature
2012-01-12 | E-GEOD-33656 | biostudies-arrayexpress
2012-01-12 | GSE33656 | GEO
| S-EPMC6332487 | biostudies-literature
| S-EPMC6826356 | biostudies-literature
| S-EPMC11332598 | biostudies-literature
2022-10-12 | PXD025882 | Pride
| S-EPMC6128946 | biostudies-literature