Unknown

Dataset Information

0

Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.


ABSTRACT: Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

SUBMITTER: Williams DK 

PROVIDER: S-EPMC2752871 | biostudies-literature | 2009 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

Williams D Keith DK   Kovach Alexander L AL   Muddiman David C DC   Hanck Kenneth W KW  

Journal of the American Society for Mass Spectrometry 20090311 7


Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural net  ...[more]

Similar Datasets

| S-EPMC4300554 | biostudies-literature
| S-EPMC3972134 | biostudies-literature
| S-EPMC7261417 | biostudies-literature
| S-EPMC3131205 | biostudies-literature
| S-EPMC7936991 | biostudies-literature
| S-EPMC11351437 | biostudies-literature
| S-EPMC3141178 | biostudies-literature
| S-EPMC7682253 | biostudies-literature
| S-EPMC6343775 | biostudies-literature
| S-EPMC2600444 | biostudies-literature