Unknown

Dataset Information

0

Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes.


ABSTRACT: In plants, chlorophylls and other tetrapyrroles are synthesized from a branched pathway that is located within chloroplasts. GUN4 (GENOMES UNCOUPLED 4) stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits porphyrins to the chlorophyll branch. GUN4 stimulates Mg-chelatase by a mechanism that involves binding the ChlH subunit of Mg-chelatase, as well as a substrate (protoporphyrin IX) and product (Mg-protoporphyrin IX) of Mg-chelatase. We chose to test whether GUN4 might also affect interactions between Mg-chelatase and chloroplast membranes, the site of chlorophyll biosynthesis. To test this idea, we induced chlorophyll precursor levels in purified pea chloroplasts by feeding these chloroplasts with 5-aminolevulinic acid, determined the relative levels of GUN4 and Mg-chelatase subunits in soluble and membrane-containing fractions derived from these chloroplasts, and quantitated Mg-chelatase activity in membranes isolated from these chloroplasts. We also monitored GUN4 levels in the soluble and membrane-containing fractions derived from chloroplasts fed with various porphyrins. Our results indicate that 5-aminolevulinic acid feeding stimulates Mg-chelatase activity in chloroplast membranes and that the porphyrin-bound forms of GUN4 and possibly ChlH associate most stably with chloroplast membranes. These findings are consistent with GUN4 stimulating chlorophyll biosynthesis not only by activating Mg-chelatase but also by promoting interactions between ChlH and chloroplast membranes.

SUBMITTER: Adhikari ND 

PROVIDER: S-EPMC2757182 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes.

Adhikari Neil D ND   Orler Robert R   Chory Joanne J   Froehlich John E JE   Larkin Robert M RM  

The Journal of biological chemistry 20090715 37


In plants, chlorophylls and other tetrapyrroles are synthesized from a branched pathway that is located within chloroplasts. GUN4 (GENOMES UNCOUPLED 4) stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits porphyrins to the chlorophyll branch. GUN4 stimulates Mg-chelatase by a mechanism that involves binding the ChlH subunit of Mg-chelatase, as well as a substrate (protoporphyrin IX) and product (Mg-protoporphyrin IX) of Mg-chelatase. We chose to test whether GU  ...[more]

Similar Datasets

| S-EPMC4683165 | biostudies-literature
| S-EPMC8821089 | biostudies-literature
| S-EPMC10017980 | biostudies-literature
| S-EPMC7209946 | biostudies-literature
| S-EPMC7508864 | biostudies-literature
| S-EPMC2672518 | biostudies-literature
| S-EPMC3129500 | biostudies-literature
| S-EPMC1218797 | biostudies-other
| S-EPMC3812566 | biostudies-literature
| PRJEB13748 | ENA