Unknown

Dataset Information

0

Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat.


ABSTRACT: This paper presents the clinical motivation, design specifications, kinematics, statics, and actuation compensation for a newly constructed telerobotic system for Minimally Invasive Surgery (MIS) of the throat. A hybrid dual-arm telesurgical slave, with twenty joint-space Degrees of Freedom (DoF), is used in this telerobotic system to provide the necessary dexterity in deep surgical fields such as the throat. The telerobotic slave uses novel continuum robots that use multiple super-elastic backbones for actuation and structural integrity. The paper presents the kinematics of the telesurgical slave and methods for actuation compensation to cancel the effects of backlash, friction, and flexibility of the actuation lines. A method for actuation compensation is presented in order to overcome uncertainties of modeling, friction, and backlash. This method uses a tiered hierarchy of two novel approaches of actuation compensation for remotely actuated snake-like robots. The tiered approach for actuation compensation uses compensation in both joint space and configuration space of the continuum robots. These actuation hybrid compensation schemes use intrinsic model information and external data through a recursive linear estimation algorithm and involve compensation using configuration space and joint space variables. Experimental results validate the ability of our integrated telemanipulation system through experiments of suturing and knot tying in confined spaces.

SUBMITTER: Simaan N 

PROVIDER: S-EPMC2772168 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat.

Simaan Nabil N   Xu Kai K   Kapoor Ankur A   Wei Wei W   Kazanzides Peter P   Flint Paul P   Taylor Russell R  

The International journal of robotics research 20090901 9


This paper presents the clinical motivation, design specifications, kinematics, statics, and actuation compensation for a newly constructed telerobotic system for Minimally Invasive Surgery (MIS) of the throat. A hybrid dual-arm telesurgical slave, with twenty joint-space Degrees of Freedom (DoF), is used in this telerobotic system to provide the necessary dexterity in deep surgical fields such as the throat. The telerobotic slave uses novel continuum robots that use multiple super-elastic backb  ...[more]

Similar Datasets

| S-EPMC9632848 | biostudies-literature
| S-EPMC4330290 | biostudies-other
| S-EPMC8024826 | biostudies-literature
| S-EPMC8024798 | biostudies-literature
| S-EPMC4379789 | biostudies-literature
| S-EPMC7525908 | biostudies-literature
| S-EPMC6951459 | biostudies-literature
| S-EPMC8184479 | biostudies-literature
| S-EPMC6751831 | biostudies-literature
| S-EPMC8024802 | biostudies-literature