Mutations in the C-terminal loop of the nucleocapsid protein affect vesicular stomatitis virus RNA replication and transcription differentially.
Ontology highlight
ABSTRACT: The 2.9-A structure of the vesicular stomatitis virus nucleocapsid (N) protein bound to RNA shows the RNA to be tightly sequestered between the two lobes of the N protein. Domain movement of the lobes of the N protein has been postulated to facilitate polymerase access to the RNA template. We investigated the roles of individual amino acid residues in the C-terminal loop, involved in long-range interactions between N protein monomers, in forming functional ribonucleoprotein (RNP) templates. The effects of specific N protein mutations on its expression, interaction with the phosphoprotein, and formation of RNP templates that supported viral RNA replication and transcription were examined. Mutations introduced into the C-terminal loop, predicted to break contact with other residues in the loop, caused up to 10-fold increases in RNA replication without an equivalent stimulation of transcription. Mutation F348A, predicted to break contact between the C-terminal loop and the N-terminal arm, formed templates that supported wild-type levels of RNA replication but almost no transcription. These data show that mutations in the C-terminal loop of the N protein can disparately affect RNA replication and transcription, indicating that the N protein plays a role in modulating RNP template function beyond its structural role in RNA encapsidation.
SUBMITTER: Harouaka D
PROVIDER: S-EPMC2772671 | biostudies-literature | 2009 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA