Unknown

Dataset Information

0

The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1.


ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They are involved in diverse biological processes, such as development, differentiation, cell proliferation and apoptosis. To study the role of miRNAs during pronephric kidney development of Xenopus, global miRNA biogenesis was eliminated by knockdown of two key components: Dicer and Dgcr8. These embryos developed a range of kidney defects, including edema formation, delayed renal epithelial differentiation and abnormal patterning. To identify a causative miRNA, mouse and frog kidneys were screened for putative candidates. Among these, the miR-30 family showed the most prominent kidney-restricted expression. Moreover, knockdown of miR-30a-5p phenocopied most of the pronephric defects observed upon global inhibition of miRNA biogenesis. Molecular analyses revealed that miR-30 regulates the LIM-class homeobox factor Xlim1/Lhx1, a major transcriptional regulator of kidney development. miR-30 targeted Xlim1/Lhx1 via two previously unrecognized binding sites in its 3'UTR and thereby restricted its activity. During kidney development, Xlim1/Lhx1 is required in the early stages, but is downregulated subsequently. However, in the absence of miR-30 activity, Xlim1/Lhx1 is maintained at high levels and, therefore, may contribute to the delayed terminal differentiation of the amphibian pronephros.

SUBMITTER: Agrawal R 

PROVIDER: S-EPMC2778741 | biostudies-literature | 2009 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1.

Agrawal Raman R   Tran Uyen U   Wessely Oliver O  

Development (Cambridge, England) 20091201 23


MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They are involved in diverse biological processes, such as development, differentiation, cell proliferation and apoptosis. To study the role of miRNAs during pronephric kidney development of Xenopus, global miRNA biogenesis was eliminated by knockdown of two key components: Dicer and Dgcr8. These embryos developed a range of kidney defects, including edema formation, delayed ren  ...[more]

Similar Datasets

| S-EPMC3602027 | biostudies-literature
| S-EPMC3197532 | biostudies-literature
| S-EPMC3042965 | biostudies-literature
| S-EPMC3673911 | biostudies-literature
| S-EPMC10551014 | biostudies-literature
| S-EPMC3293535 | biostudies-literature
| S-EPMC1976305 | biostudies-literature
| S-EPMC6680373 | biostudies-literature
| S-EPMC3375297 | biostudies-literature
| S-EPMC3799553 | biostudies-literature