Ontology highlight
ABSTRACT: Background
The experience of undergoing surgery is known to induce a short-term, fight-or-flight physiological stress response. As an optimum immune response at the site of surgery would enhance tissue repair, we examined surgical stress-induced immune cell redistribution profiles as predictors, and potential mediators, of short and long-term postoperative recovery. We tested the a priori hypothesis that predefined adaptive immune cell redistribution profiles observed during surgery will predict enhanced postoperative recovery.Methods
This prospective longitudinal study involved fifty-seven patients undergoing meniscectomy. Knee function was assessed preoperatively and at one, three, eight, sixteen, twenty-four, and forty-eight weeks postoperatively with use of the clinically validated Lysholm scale, which assesses mechanical function, pain, mobility, and the ability to perform daily activities. Surgery-induced immune cell redistribution was measured in the blood at baseline, before surgery, and after surgery.Results
Mixed-model repeated-measures analyses revealed a main effect of immune cell redistribution: patients who showed the predefined "adaptive" lymphocyte and monocyte redistribution profiles during surgery showed enhanced recovery. Interesting differences were also observed between the sexes: women as a group showed less adaptive redistribution and correspondingly showed significantly delayed maximum recovery, requiring forty-eight weeks, compared with men, who required only sixteen weeks. Inter-individual differences in leukocyte redistribution predicted the rate of recovery across both sexes.Conclusions
Immune cell redistribution that is induced by the stress of undergoing surgery can predict (and may partially mediate) postoperative healing and recovery. These findings may provide the basis for identifying patients (either prospectively or during surgery) who are likely to show good as opposed to poor recovery following surgery and for designing interventions that would maximize protective immune responses and enhance the rate and extent of recovery.
SUBMITTER: Rosenberger PH
PROVIDER: S-EPMC2780920 | biostudies-literature |
REPOSITORIES: biostudies-literature